# 205. Glycosylidene Carbenes 

Part 13

Synthesis and Thermolysis of Representative 1-Azi-glycoses<br>by Andrea Vasella*l ${ }^{1}$, Christian Witzig, Christian Waldraff, Peter Uhlmann, Karin Briner, Bruno Bernet, Luigi Panza, and René Husi<br>Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Dedicated to Duilio Arigoni on the occasion of his 65th birthday
(1.X.93)

In the context of the hypothesis postulating a heterolytic cleavage of a $\mathbf{C -}-\mathrm{N}$ bond during thermolysis of alkoxydiazirines (Scheme 1), we report the preparation of the diazirines $4,5,7$, and 8 , the kinetic parameters for the thermolysis in MeOH of the diazirines 1 and 4-9, and the products of their thermolysis in an aprotic environment. The diazirines 4,5,7, and 8 (Schemes 2-5) were prepared from the known hemiacetals 10, 19, 34 (prepared from 31 in an improved way), and $\mathbf{4 2}$ according to an established method. The oximes $\mathbf{1 1 , 2 0 , 3 5}$, and $\mathbf{4 3}$ were obtained from the corresponding hemiacetals as $(E / Z)$-mixtures; 43 was formed together with the cyclic hydroxylamine 44. Oxidation of $\mathbf{1 1}, \mathbf{3 5}$, and $\mathbf{4 3}$ ( N -chlorosuccinimide/1,8-diazabicyclo[5.4.0]undec-7-ene ( $\mathrm{NCS} / \mathrm{DBU}$ ) or $\mathrm{NaIO}_{4}$ ) gave good yields of the ( $Z$ )-hydroximolactones 12,36 , and 45 , while the oxime 20 led to a mixture of the $(E)$ - and $(Z)$-hydroximolactones 21 and 22, which adopt different conformations. Their configuration was assigned, inter alia, by a comparison with the enol ethers 28 and 29 , which were obtained, together with 30 , from the reaction of the diazirine 5 with benzaldehyde and $\mathrm{PBu}_{3}$. Treatment of the hydroximolactone $O$-sulfonates $13,23,37$, and 46 with $\mathrm{NH}_{3} / \mathrm{MeOH}$ afforded the diaziridines $15,25,38$, and 47 in good yields, while the ( $E$ )-sulfonate 24 decomposed readily. Oxidation of the diaziridines gave $4,5,7$, and 8 , respectively. Thermolysis of the diazirines 1 and 4-9 in MeOH yielded the anomeric methyl glycosides 50/51, 16/17, 26/27, 52/53, 39/40, 48/49, and 54/55, respectively. A comparison of the kinetic data of the thermolysis at four different temperatures shows the importance of conformational and electronic factors and is compatible with the hypothesis of a heterolytic cleavage of a $\mathrm{C}-\mathrm{N}$ bond. An early transition state is evidenced by the absence of torsional strain by an annulated 1,3 -dioxane ring. Thermolysis of 1 in MeCN at $23^{\circ}$ ied mostly to the diastereoisomeric ( $Z, Z$ )-, $(E, E)$, and ( $E, Z$ )-lactone azines $\mathbf{5 6}$, 57, and 58 (Scheme 6), which convert to 56 under mild conditions, and to $59(3 \%)$. The benzyloxyglucal 59 was obtained in higher yields ( $18 \%$ ), together with $44 \%$ of $56-58$, by thermolysis of solid 1 . Similarly, thermolysis at higher temperatures of 4 in toluene, THF, or dioxane and of 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF yielded the ( $Z, Z$ )-lactone azines 60 and 61, respectively, the latter being accompanied by the dihydro-oxazole 62.

Introduction. - Diazirines [1] are important precursors of carbenes, and the mechanism of their thermolysis attracted considerable attention, which focused on the concertedness of the cleavage of the two $\mathrm{C}-\mathrm{N}$ bonds and the homo- or heterolytic nature of the bond breaking [2-7]. The mechanism and the kinetics of the thermolysis of (alkoxy)alkyldiazirines (see [8] and earlier papers of the series [9-13]) have not been studied, but we hypothesized that thermolysis of 1 -azisugars, such as $\mathbf{1}$, i.e. cyclic (alkoxy)alkyldiazirines, is initiated by heterolysis of one of the $\mathrm{C}(1)-\mathrm{N}$ bonds, accord-
${ }^{1}$ ) New address: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich.

Scheme 1




4


7


5



9

Piv $=$ Pivaioyl $\left\{=2,2\right.$-dimethylpropanoyl), $\mathrm{MeOC}_{6} \mathrm{H}_{4}=$ 4-Methoxyphenyl
ing to Scheme 1 [14]. This heterolysis leads to a zwitterion-2 in Scheme $l$ - and, hence, by loss of $\mathrm{N}_{2}$ to a carbene such as $\mathbf{3}$. Although the structure of 1-azisugars does not provide supporting evidence for such a heterolytic process - X-ray analysis of 9 established that the length of the two $\mathrm{C}(1)-\mathrm{N}$ bonds is almost equal (the pseudoaxial bond is slightly longer) [15] -, one may evidence the intermediacy of a species possessing a cationic character at $\mathrm{C}(1)$ by considering its analogy to a glycosyl cation. Similarly as a glycosyl cation, such an intermediate should be destabilized by electron-withdrawing substituents. Such substituents ( $\sigma$-acceptors) are expected to stabilize both 1-azisugars and glycosyl derivatives with a potential leaving group at the anomeric center [16-20]. A mechanistic proposal in keeping with such a ionic transition state, relating $\log k$ with the substituent parameters $\sigma^{+}-\sigma$, has been derived from the study of the effect of para-substituents on the thermolysis of 3 -aryl-3-chlorodiazirines [21] ${ }^{2}$ ).

To demonstrate such a dependency, we determined the kinetic parameters for the thermolysis in MeOH of the 1 -azisugars 1 and $\mathbf{4 - 9}$ (Scheme 1). We expected that 4, possessing more highly electronegative $O$-acyl instead of $O$-alkyl groups, would be more stable than 1 [16] [18-20] [24]. The zwitterion, derived from the 4,6-O-benzylidene-pro-

[^0]tected trans-trioxadecalins 5, 7, and 9 should be destabilized by torsional strain, similarly to analogous glycosyl cations, as it was demonstrated by Fraser-Reid and coworkers [25] [26]. The influence of the annulated dioxane ring may be evaluated by comparing the thermolysis of 1 and 5 , on the one hand, and the one of 6 and 7 , on the other hand. The $N$-acetylglucosamine derivative $\mathbf{8}$ differs from 1 only by the substitution of BnO at $\mathrm{C}(2)$ by an acetamido substituent, which is not expected to lead to large differences in activation energy [27] [28]. The $N$-acetylallosamine derivative 9 [29] possesses a 2-acetamido substituent, a 4,6-O-benzylidene group, and a different configuration. A comparison of the thermolysis of 9 with the one of $\mathbf{1}$ and 4-8 should allow to distinguish between the contribution of these structural parameters. Depending upon the influence of the annulation and of the configuration (cf. [16] [18] [30-33]), 9 may be more or less stable than 8 . We were also interested in the nature of the products of thermolysis in an aprotic environment, as they are invariably formed when 1-azisugars are exposed to a relatively unreactive partner [8] [34-36], and of which only a relatively minor component, the alkoxyglycal 59 [37] (ca. 5\%) had been characterized [38].

Results and Discussion. - 1. Preparation of the Diazirines. The preparation of the diazirines $\mathbf{1}$ [39], 6 [39], and 9 [29] has been described. The pivaloylated 1-aziglucose 4, the (4-methoxybenzylidene)-protected 1 -aziglucose 5, the benzylidene-protected 1-azimannose 7 , and the tribenzylated $N$-acetyl-1-aziglucosamine derivative 8 were prepared according to the same method with some variations, where appropriate, as depicted in the Schemes 2-5.

Aziglucose 4. The oximes 11 (Scheme 2) were obtained from the known tetrapivaloate $10[40]$ as an $(E / Z)$-mixture ( $3: 1 ; 87 \%$ ). Oxidation of 11 was best effected with $N$-chlorosuccinimide (NCS) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and led to $79 \%$ of a single hydroximo-1,5-lactone $\mathbf{1 2}$. Other reagents, such as $\mathrm{NaIO}_{4}, \mathrm{MnO}_{2}$, or PhIO , led to complex mixtures or to by-products which were difficult to remove. The crystalline triflate $\mathbf{1 3}$, obtained in $92 \%$ yield from 12 , was treated at low temperature with $\mathrm{NH}_{3}$ in MeOH , using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as cosolvent, to yield $72 \%$ of the diaziridine 15 , while the mesylate 14 led to a mixture. Oxidation of 15 with $\mathrm{I}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under basic conditions, followed by aqueous workup at $0^{\circ}$ and flash chromatography, afforded the diazirine 4

Scheme 2



Scheme 3



25


28


29


30
$\mathrm{MeOC}_{6} \mathrm{H}_{4}=$ 4-Methoxyphenyl
which was stored in the freezer for several days without noticeable decomposition (TLC). Methanolysis yielded the methyl glucosides 16 [66] and 17 in $69 \%$ and in a ratio of $85: 15$.

Aziglucose 5. A mixture of the fully protected allyl glucosides 18 (Scheme 3) were prepared similarly to the pure $\alpha$-D-anomer [41a] and to the analogous methyl $\alpha$-D-glucosides [41b, c] (cf. also [42]). Removal of the allyl group according to the procedure of Nashed and Anderson [43], using first $\mathrm{KO}(t-\mathrm{Bu})$ and then $\mathrm{I}_{2}$ in aqueous THF, afforded the crystalline hemiacetals $\mathbf{1 9}(77 \%)$. Oximation led almost quantitatively to the oximes $\mathbf{2 0}$ $((E) /(Z) \approx 4: 1)$, which were oxidized with NCS in the presence of DBU at low temperatures to yield $96 \%$ of a mixture of the $(E)$ - and $(Z)$-hydroximolactones 21 and 22 in a ratio which appeared to depend upon batch size and conditions and varied from ca. 9:1 for a $11-\mathrm{g}$ batch to $\mathrm{ca} .1: 1$ on a $2-\mathrm{g}$ scale. The major, crystalline product 21 was obtained pure in $82 \%$ yield. Oxidation with buffered periodate was not complete and yielded 21/22 in a ratio of $c a .5: 1$. This is the first time that we have obtained a mixture of diastereoisomeric, fully substituted glyconhydroximo-1,5-lactones.

The disappearance of the $\mathrm{H}-\mathrm{C}(1)$ signal, the IR bands at 1670 and $1660 \mathrm{~cm}^{-1}$, and the $\mathrm{C}(1)$ signals at 150.73 and 151.14 ppm for 21 and 22, respectively, confirm that both products are hydroximolactones. Their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra ( $\left.\mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6}\right)^{3}$ ) show striking differences of the chemical shift for $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)$, and $\mathrm{H}-\mathrm{C}(5)$, and significant differences in the values of the corresponding coupling constants, as may be seen from Table 2 (see Exper. Part $)$. The large $\Delta \delta$ value of 1.01 ppm for $\mathrm{H}-\mathrm{C}(5)$ suggests a conformation, where the $\mathrm{BnO}-\mathrm{C}(2)$ group of 21 is close to $\mathrm{H}-\mathrm{C}(5)$. This is best realized in a $B_{2,5}$ to ${ }^{1} S_{5}$ conformer, which is in keeping with a very small $J(1,2)$ and a large $J(4,5)$, and with a $\Delta \delta$ value of 0.41 ppm for $\mathrm{H}-\mathrm{C}(3)$, due to the small dihedral angle with $\mathrm{O}-\mathrm{C}(2)$ and

[^1]$\mathrm{O}-\mathrm{C}(4)$. The minor isomer $\mathbf{2 2}$ is characterized by an upfield shift of $\mathrm{H}-\mathrm{C}(4)$ by 0.68 ppm , and by larger coupling constants, both being consistent with a ${ }^{1,4} B$, where $\mathrm{H}-\mathrm{C}(4)$ is in a flagpole position and deshielded by the hydroximo function. The isomers did not equilibrate upon standing in $\mathrm{CDCl}_{3}$ at ambient temperature for 14 days, unlike the behavior of the known ( $E$ )-hydroximo-1,4-lactones [44]. Isomerization of an ( $E$ )-2-deoxy-hydroximo-1,5-lactone, however, also required stronger acid catalysis [45]. It is difficult to assign the ( $E / Z$ )-configuration. Unfortunately, a small $\Delta \delta$ value for $\mathrm{C}(1)(0.4 \mathrm{ppm}$; Table 3, see Exper. Part) does not allow any assignment (cf. [45] [46] and ref. cit. therein). However, upfield shifts for $\mathrm{C}(5)$ of $21(\Delta \delta=8 \mathrm{ppm})$ and for $\mathrm{C}(2)$ of $22(\Delta \delta>3.8 \mathrm{ppm}$, $\gamma$-effect)) suggest an ( $E$ )-configuration for the main isomer 21. A weak NOE between NOH and $\mathrm{H}-\mathrm{C}(2)(2 \%$ upon irradiation of NOH and $1 \%$ upon irradiation of $\mathrm{H}-\mathrm{C}(2)$ ) is in keeping with this assignment. There is also evidence for the ( $E$ )-configuration of the major isomer 21 based on a comparison with the diastereoisomeric enol ethers 28 and 29, which were obtained (together with 30) in preliminary experiments, exploring the reaction of the diazirine 5 with benzaldehyde in the presence of phosphines [47-50]. These diastereoisomers adopt conformations which are similar to those of 21 and 22 , respectively. The signal for the olefinic H of the isomer adopting a $B_{2,5}$ to ${ }^{1} S_{5}$ conformation resonates at 6.43 ppm , evidencing the cis-arrangement of this H and $\mathrm{O}-\mathrm{C}(1)$, while the other diastereoisomer shows the corresponding signal at 5.60 ppm (cf. [51] [52]). In agreement with this, the two $\mathrm{H}_{\text {ortho }}$ of the olefinically bound Ph group of the latter isomer (29) are deshielded by the cis-alkoxy substituent, and resonate at $7.57-7.61 \mathrm{ppm}$, while the corresponding signal of the former isomer is found below 7.41 ppm .

Both hydroximolactones 21 and 22 were mesylated to yield 23 and 24, respectively. The mesylate 23, derived from the major ( $E$ )-hydroximolactone, formed a single, crystalline diaziridine 25 in high yields, while the presumed ( $Z$ )-isomer 24 decomposed readily and gave only small amounts of 25 . The diazirine 5 was obtained in the usual way in $79 \%$ from 25.

Azimannose 7. This diazirine was prepared similarly to the gluco-diazirine 5. The synthesis of the known 2,3-di-O-benzylated benzylidene-mannopyranose 34 [53] (Scheme 4) was simplified. Benzylidenation with benzaldehyde dimethyl acetal [54] of allyl mannopyranoside 31, which was prepared from mannose according to Lee and Lee [55] yielded the known mannopyranoside 32 [56] in $59 \%$ yield from mannose. Benzylation of 32, and removal of the allyl group, again according to the procedure by Nashed and Anderson [43] gave 34, which was treated with $\mathrm{NH}_{2} \mathrm{OH}$. The crystalline oximes 35 $((E) /(Z) \approx 4: 1)$ were obtained in $74 \%$ yield from 32. Oxidation of 35 was again best effected with NCS in the presence of DBU and gave the hydroximolactone 36 as a single isomer which was directly transformed in the crystalline mesitylenesulfonate 37 ( $90 \%$ ). Treatment of $\mathbf{3 7}$ with a solution of $\mathrm{NH}_{3}$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2$ yielded the diaziridines $\mathbf{3 8}$

Scheme 4


( $70 \%$ ). The mesitylenesulfonate 37 proved more suitable than the corresponding mesylate, which gave 38 in only $12 \%$ yield. Oxidation of 38 with $\mathrm{I}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of $\mathrm{Me}_{3} \mathrm{~N}$ gave the poorly stable diazirine $7(80 \%)$.

N -Acetylaziglucosamine 8 . The known $N$-acetyl-tri- $O$-benzyl-d-glucosamine 42 [57] (Scheme 5) was prepared by partial deprotection [43] of the allyl glycoside 41 [58] [59]. Treating 42 with a solution of $\mathrm{NH}_{2} \mathrm{OH}$ in MeOH at neutral pH gave a mixture of the oximes 43 and the $N$-(alkoxyalkyl)hydroxylamine 44 . Oxidation of this mixture with a buffered solution of $\mathrm{NaIO}_{4}$ in aqueous EtOH afforded the crystalline lactone oxime 45 in $70 \%$ yield from $\mathbf{4 2}$. The tosylate 46 was obtained in almost quantitative yield and proved the best of several sulfonates for the preparation of the relatively sensitive diaziridines 47 which were immediately oxidized with $I_{2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to give the crystalline diazirine 8 in $63 \%$ yield from 46 . The diazirine 8 was stored without significant decomposition for several days at $-20^{\circ}$.

Scheme 5


The oximes 11, 20, 35, and 43 were obtained as mixtures of the $(E)$ - and $(Z)$-isomers, with an $(E) /(Z)$ ratio between $2.5: 1$ for 43 and $4: 1$ for 20 and 35 . The relative configurations were assigned on the basis of the chemical-shift differences for $\mathrm{H}-\mathrm{C}(1)(4 \delta=0.77,0.56,0.53$, and 0.72 ppm , resp.). This signal is consistently found at higher fields for the minor $(Z)$-isomer, particularly for 11 and $\mathbf{4 3}$, carrying at $C(2)$ an acyloxy or acetamido substituent. These assignments are corroborated by the $\gamma$-effect, shifting the $\mathrm{C}(2)$ signal of the $(Z)$-isomers to higher fields (Table 3), and by the relative position of the $\mathrm{H}-\mathrm{C}(2)$ signal, which appears at higher fields for the ( $E$ )-isomer (Table 2). Only the mixture obtained by treating 42 with $\mathrm{NH}_{2} \mathrm{OH}$ consisted of three species (TLC, ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy). Chromatographic separation of the components and immediate measurement of the NMR spectra confirmed the presence, in addition of the $(E)$ - and ( $Z$ )-oximes 43, of the $\beta$-D-conligurated $N$-(glycosyl)hydroxylamine 44. Signals of three exchangeable H at $6.62(\mathrm{NHOH}), 5.37(\mathrm{NHOH})$, and 4.85 ppm ( $\mathrm{AcN} H$ ), the chemical shift for the $d$ of $\mathrm{H}-\mathrm{C}(1)$ at 3.79 ppm , and the vicinal coupling constants $J(1,2)=9.4$, $J(2,3)=10.4, J(3,4)=8.5$, and $J(4,5)=9.6 \mathrm{~Hz}$, which are typical for a ${ }^{4} C_{1}$ conformation, evidence the cyclic nature and the $\beta$-D-configuration of $\mathbf{4 4}$. The structure of $\mathbf{4 4}$ is corroborated by the chemical shift of $\mathrm{C}(1)$ at 91.7 ppm .

Oxidation of $\mathbf{1 1}, \mathbf{3 5}$, and $\mathbf{4 3} / 44$ led diastereoselectively to the homogeneous hydroximolactones 12, 36, and 45, to which the ( $Z$ )-configuration was assigned by analogy with earlier results [44] [60]. Formation of both the ( $Z$ )- and ( $E$ )-hydroximolactones had so far only been observed for 2-deoxyaldose oximes [45] [61] and for the oxime of 2,3:5,6-di-O-isopropylidene-D-mannose under mild conditions. The formation of two diastereoisomers from $\mathbf{2 0}$ may be due, at least in part, to the improved, mild oxidation method. Sulfonation of the hydroximolactones resulted in a downfield shift of $\mathrm{C}(1)$, characterized by $\Delta \delta$ values between 11 ppm for the triflate $\mathbf{1 3}$ and 4.2 ppm for the mesitylenesulfonate 37 (Table 3). The sulfonates adopt the same conformations as the parent hydroximolactones (Table 2).

Depending upon the gluco- or manno-configuration of the parent aldose, the known 1-hydrazisugars are either predominantly a single diastereoisomer or a nearly $1: 1$ mixture of two trans-configurated diastereoisomers [39]. In keeping with this, we found only traces of a second isomer for the gluco-configurated $\mathbf{1 5}$ and one diastereoisomer only of $\mathbf{2 5}$. The $N$-acetylglucosamine derivative 47 is a $5.2: 1$ mixture of two diastereoisomers. The manno-diaziridine 38, however, although migrating as a single spot on TLC, is a $2: 3$ mixture of two diastereoisomers as evidenced by two sets of signals in the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra. All these diaziridines show the characteristic IR absorption for $\mathrm{N}-\mathrm{H}$ at $3270-3280 \mathrm{~cm}^{-1}$ and a large $J_{\text {trans }}\left(\mathrm{NH}, \mathrm{N}^{\prime} \mathrm{H}\right)$ of $9.2-9.4 \mathrm{~Hz}$. The chemical-shift values for the hydrazi group of the isomers of 38 are remarkably different from each other, with $\Delta \delta$ $(\mathrm{NH})=1.17 \mathrm{ppm}$ for the major 38 a and 0.05 ppm for the minor isomer $\mathbf{3 8 b}$. A tentative assignment of the NHNH configuration of the two isomers of $\mathbf{3 8}$ is based on the following reasoning: The chemical shift of 1.18 ppm for one of the NH groups of $\mathbf{3 8 a}$ is at very high fields, by comparison to all the other glycosylidene-diaziridines; the only value close to it ( 1.45 ppm ) belongs to one of the structurally related 1,5 -anhydro-2,3,4,6-tetra- $O$-benzyl- 1 -hydraziD -mannitols [39]. The extreme value of the chemical shift suggests that it is due to a NH located on the same side (as defined by a plane through $\mathrm{C}(1)$ and the two N ) as $\mathrm{BnO}-\mathrm{C}(2)$, and the shielding suggests that it is not in the vicinity of the $\mathrm{O}-\mathrm{C}(2)$, hence located below the plane of the pyranose ring (pseudoaxial). The relative chemical shift of $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(5)$ is in agreement with this assignment, in that $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(5)$ of the major isomer 38a resonate at 3.56 and 3.81 ppm , respectively, while the corresponding signals for $\mathbf{3 8 b}$ are found at 3.91 and 3.25 ppm , in keeping with the deshielding effect of the nearby N -atom lone pair [62]. The significant low-field shift of $\mathrm{AcN} H$ ( $\Delta \delta=0.88 \mathrm{ppm}$ ) in the minor isomer 47b may result from an interaction with the lone-pair of a N -atom of the diaziridine ring [62]. The conformation of the pyranose ring of the diaziridines is hardly influenced by the spiro-annulation and is close to a ${ }^{4} C_{1}$. As evidenced by a two-dimensional TLC experiment, the isomers of 47 equilibrate under slightly acidic conditions.

The diazirines $\mathbf{4}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$ show the characteristic IR bands, UV maxima, and NMR data of glycosylidenediazirines, as exemplified by the $s$ of $\mathrm{C}(1)$ of 4 at 56.41 ppm , and its UV maxima at 252 and 340 nm . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $7, \mathrm{H}-\mathrm{C}(2)$ is under the influence of the diazirine ring and resonates at 2.94 ppm ( 3.24 and 3.40 in the diaziridines 38 ). The high-field shift of $\mathrm{Me}(1.64 \mathrm{ppm})$ of the acetamido group of $\mathbf{8}$ is presumably also due to the shielding properties of the $\mathrm{N}=\mathrm{N}$ bond [39] [63].
2. Determination of the Activation Energy. We determined the activation energy for the thermolysis of the diazirines $\mathbf{1}$ and $\mathbf{4 - 9}$ in MeOH . The reaction of the intermediate carbenes with MeOH led to mixtures of the anomeric methyl glycosides $\mathbf{5 0 / 5 1}$ [35] [64] [65], 16/17 [66], 26/27 [41], 52/53 [65] [67], 39/40 [68] [69], 48/49 [70], and 54/55 (Schemes 2-5) and was faster than bimolecular reactions of carbenes and diazirines (see below). First-order rate constants were thus obtained for the decrease [64] of diazirine concentration. The methyl glycosides do not interfere with the $n, \pi^{*}$ transition of the diazirines at 350 nm [29] [34] [39], and the disappearance of the diazirines was followed by measuring the decrease of the intensity of this absorption as a function of time. The rate constants were determined at three or four different temperatures, and the activation energy $E_{\mathrm{a}}$ was calculated using the Arrhenius equation [71]. The activation enthalpy ( $\Delta H^{\neq}$) and the activation entropy ( $\Delta S^{\neq}$) were derived from the same set of data using the Eyring equation [71].

Table 1. Kinetic Parameters for the Thermolysis of 1-Aziglycoses in MeOH

| Diazirine | $E_{\mathrm{a}}[\mathrm{kcal} / \mathrm{mol}]$ | $\log A$ | $\begin{aligned} & \tau(298 \mathrm{~K}) \\ & {[\mathrm{min}]} \end{aligned}$ | $\begin{aligned} & \Delta H^{\neq}(298 \mathrm{~K}) \\ & {[\mathrm{kcal} / \mathrm{mol}]} \end{aligned}$ | $\begin{aligned} & \Delta S^{\neq}(298 \mathrm{~K}) \\ & {[\mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}]} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 23.0 | 13.4 | 33 | 22.4 | 1.7 |
| 4 | 25.0 | 14.1 | 202 | 24.0 | 4.8 |
|  | 22.2 | 12.4 | 110 | 21.7 | -3.2 |
|  | 23.2 | 14.2 | 7 | 22.6 | 5.5 |
|  | 20.0 | 11.4 | 23 | 19.5 | -8.2 |
|  | 22.6 | 12.6 | 112 | 22.0 | -3.1 |
|  | 28.1 | 15.1 | 4159 | 27.2 | 8.1 |

The activation energies $E_{\mathrm{a}}$ (Table I) span a range between 20.0 and $28.1 \mathrm{kcal} / \mathrm{mol}$ $\left(\Delta H^{*}\right.$ between $19.5 \mathrm{kcal} / \mathrm{mol}$ for 7 and $27.2 \mathrm{kcal} / \mathrm{mol}$ for 9 ), and the half-lives $\tau$ at $25^{\circ}$ are between 7 and 4159 min . The activation energy for the tetra-O-benzylaziglucose 1 ( 23 $\mathrm{kcal} / \mathrm{mol}, \log A=13.4$ ) is similar to $E_{\mathrm{a}}$ for (alkoxy)- and (aryloxy)chlorodiazirines [72] [73], but higher than $E_{\mathrm{a}}$ for dimethoxydiazirine ( $18.9 \mathrm{kcal} / \mathrm{mol}$, pentane) [4] and (methoxy)phenoxydiazirine ( $c a .20 \mathrm{kcal} / \mathrm{mol}$, pentane) [3]. $\log A$ is close to the theoretical value of 13.55 for unimolecular reactions; concordingly, the activation entropy is small. An influence of the electronegativity of the diazirine substituents on kinetic stability has been found for 3-halo-3-phenoxydiazirines, where the F-atom led to the highest kinetic
stability ( $E_{\mathrm{a}}=26.4 \mathrm{kcal} / \mathrm{mol}$ for 3-fluoro-3-phenoxydiazirine, i.e. $3 \mathrm{kcal} / \mathrm{mol}$ higher than for the corresponding chloro derivative ( $\log A=13$, hexane) [6]). Similarly, replacement of the alkoxy substituents in 1 by acyloxy substituents in 4 raises $E_{\mathrm{a}}$ by $2 \mathrm{kcal} / \mathrm{mol}$ $\left(\Delta \Delta H^{\neq}=2.6 \mathrm{kcal} / \mathrm{mol}\right) . \Delta S^{\neq}$is higher by 3 e.u. and positive.

A comparison of the kinetic data for 1 and 5 shows that annulation of a 1,3-dioxane ring has a slight influence only on $E_{\mathrm{a}}$, lowering it by $0.8 \mathrm{kcal} / \mathrm{mol} . \Delta S^{\star}$ for 5 is still small, but negative ( $\Delta \Delta S^{\neq}=4.9$ e.u.). A lowering of $\Delta H^{*}$ by $3.1 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\neq}$by 13.7 e.u. upon annulation of a 1,3-dioxane ring is also observed in the manno-series, as seen by comparing the azimannoses 6 and 7 . The negative and quite important $\Delta S^{\neq}$values for the benzylidenated diazirines are surprising, as annulation of the 1,3-dioxane ring leads to a trans-trioxadecalin system, and hence to a restriction of conformational flexibility of the starting material. The influence of annulation may, however, be rationalized by assuming that heterolysis of the $\mathrm{C}-\mathrm{N}$ bond requires a change of the ring conformation to allow a donor-acceptor interaction between the $\pi$-type lone pair of $\mathrm{O}-\mathrm{C}(5)$ with the LUMO associated with the bond breaking, i.e. a lowering of the $\mathrm{C}(5)-\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(2)$ dihedral angle. The number of possible ways to effect this conformational change is restricted by annulation of a dioxane ring, as in 5 and 7, and this leads to a negative entropy of activation. During this conformational change - presumably from ${ }^{4} C_{1}$ in the direction of $B_{2,5}$ - the axial substituent at $\mathrm{C}(2)$ of 7 moves towards a more favorable pseudoequatorial orientation, hence the lowered activation enthalpy for the thermolysis of 7 as compared to 6. No such difference for $E_{\mathrm{a}}$ is found in the thermolysis of the tetra- $O$-benzylated gluco- and manno-diazirines $\mathbf{1}$ and $\mathbf{6}$, and one has to conclude that the conformational change associated with thermolysis of 6 is different from the one of 7 . Some credibility is lent to the above rationalization by comparing the kinetic data for $\mathbf{1}, \mathbf{8}$, and 9 . The activation enthalpies for the thermolysis of 1 and 8 differ by only $0.4 \mathrm{kcal} / \mathrm{mol}$, and the activation entropy by 4.8 e.u. The 1,3 -dioxane ring in 9 is expected to lower $E_{\mathrm{a}}$, as the conformational change from a ${ }^{4} C_{1}$ in the direction of a $B_{2,5}$ implies that the axial $\mathrm{BnO}-\mathrm{C}(3)$ group moves towards a pseudoequatorial position. Also, one expects $\Delta S^{\neq}$to be negative. The opposite is found. Both the increased $\Delta H^{\neq}$and $\Delta S^{\neq}$are, however, consistent with the breaking of the H -bond between the acetamido and the $\mathrm{BnO}-\mathrm{C}(3)$ groups in the transition state. This is similar to the direct influence of the ease of rotation around the $\mathrm{C}(2)-\mathrm{C}(3)$ bond on the rate of glycoside hydrolysis found by Feather and Harris [32] and consistent with a change of the pyranose-ring conformation during thermolysis. That the torsional strain of the annulated dioxane ring on the hydrolytic stability of glycosides, which has been described by Fraser-Reid and coworkers [25] is not observed in the thermolysis of the benzylidenated diazirines 5,7 , and 9 may be explained by the strongly exergonic nature of the thermolysis (release of ring strain and formation of $\mathbf{N}_{2}$ ) and, thus, an early transition state, while a late transition state close to the oxycarbenium intermediate is characteristic for glycoside hydrolysis. A comparison of the steric and electronic factors on the thermal stability of glycosylidene-diazirines, on the one hand, and on the hydrolytic stability of glycosides, on the other hand, may thus contribute to distinguish early and late events on these reaction paths. The thermal stability of the glycosylidene-diazirines does not contradict the hypothesis illustrated in Scheme 1 and suggests that the ease of conformational changes associated with thermolysis modulates the thermal stability of spirocyclic alkoxydiazirines at least as efficiently as changes of the electronic properties of the substituents.
3. Products of Thermolysis in Aprotic Solvents. Thermolysis of $\mathbf{1}$ in MeCN at $23^{\circ}$ for 16 h transformed the starting material completely into a mixture of products (Scheme 6). The major products were diastereoisomeric lactone azines. The ( $Z, Z$ ) -azine 56 ( $46 \%$ ) and the ( $E, E$ )-isomer $57(5 \%)$ were isolated as pure compounds, whereas the ( $E, Z$ )-azine $\mathbf{5 8}$ was only observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a mixture with $\mathbf{5 6}$. This mixture was completely transformed to the ( $Z, Z$ )-isomer 56 after standing for one week in $\mathrm{CDCl}_{3}$ at $4^{\circ}$. The ready isomerization of 58 prevented its purification and the determination of the yield in which it was initially formed. Besides the azines, we isolated $3 \%$ of the benzyloxyglucal 59 [37] [74] ${ }^{4}$ ). Remarkably, thermolysis of crystalline 1 at room temperature yielded 59 in a higher yield ( $18 \%$ ), besides $44 \%$ of the azine mixture.
Scheme 6




[^2]Thermolysis of the diazirine 4 in toluene, THF, or dioxane gave good yields of the ( $Z, Z$ )-lactone azine 60 ; no other products were isolated in significant amounts. Thermolysis of the diazirine 9 in boiling $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded mainly the $(Z, Z)$-azine 61 and the dihydro-1,3-oxazole $62[29]^{5}$ ). The same products were obtained by thermolysis of 9 in THF at $50^{\circ}$, as judged from TLC and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the crude mixture.

Formation of (diastereoisomeric) azines and of hetero-substituted azines from diazirines and from diazo compounds is well known [2] [75-83]. Azines result from the reaction of carbenes with the parent diazirine or diazo compound [79] [84-88] or by (stereoselective) dimerization of diazo compounds with loss of $\mathrm{N}_{2}$ [89] [90]. Diazo compounds may be formed even from donor-substituted diazirines [91] [92]. We found no evidence for the formation of an intermediate diazo compound, but cannot exclude the rearrangement of some 1 to the corresponding diazo compound. Complete rearrangement of 1 in MeOH can be excluded, as the disappearance of the UV absorption at 350 nm during thermolysis is of first order (cf. [93]).

The ready isomerization of the ( $E, Z$ )-lactone azine 58 to the $(Z / Z)$-isomer 56 and the exclusive formation, at higher temperatures, of the $(Z, Z)$-isomers from the diazirines 4 and 9 demonstrate the relative stability of these isomers, which is in keeping with the preferred ( $Z$ )-configuration of lactone hydrazones [46] [94], lactone semicarbazones [95], lactone oximes [44] [60] [96], and lactam oximes [97], but differs from the preferred conformation of ester azines [98]. The conformation of acyclic alkoxyazines is presumably similar to the one of acyclic imino ethers [99] and characterized by a $\mathrm{N}=\mathrm{C}-\mathrm{O}-\mathrm{C}$ angle of $0^{\circ}$, which leads to a stabilizing $\mathrm{n}(\mathrm{O})$-donor $\rightarrow \sigma^{*}(\mathrm{C}-\mathrm{N})$-acceptor interaction ('generalized anomeric effect'). Such a conformation is inaccessible to cyclic alkoxyazines ( = lactone azines), but favored in ester azines [98], where it will lead, in the ( $Z$ )-isomers, to a destabilizing 1,5 -interaction. The $(Z)$-configuration of lactone azines, however, may be stabilized by a $\mathrm{n}(\mathrm{N})$-donor $\rightarrow \sigma^{*}(\mathrm{C}-\mathrm{O})$-acceptor interaction, while the $(E)$-isomers are destabilized by a 1,5 -interaction with the equatorial substituent at $C(2)$ [45] [60].

The benzyloxy glucal 59 is formed by a [1,2-H] shift in the intermediate carbene. Intramolecular $[1,2-\mathrm{H}]$ shifts are rapid for singlet alkyl carbenes [100], but considerably slowed down for donor-substituted carbenes with reduced electrophilic character. This is also valid for the alkoxy-carbenes derived from 1 -aziglycoses, in spite of the axial orientation of $\mathrm{H}-\mathrm{C}(2)$ [101] and the expected stabilization by the $\mathrm{BnO}-\mathrm{C}(2)$ group of the positive charge which is developed at $\mathrm{C}(2)$ in the transition state of the $[1,2-\mathrm{H}]$ shift [102-105], factors which should both facilitate such a shift. A similar behavior is found for other resonance-stabilized carbenes [102] [106] [107].

The $\mathrm{C}=\mathrm{N}$ bonds of 56 and 57 absorb at 1645 and $1635 \mathrm{~cm}^{-1}$, respectively, In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, the small values of $J(2,3)(1.7(\mathbf{5 6}), 1.6(57)$, and 1.6 and $2.2 \mathrm{~Hz}(\mathbf{5 8}))$ and of $J(3,4)(4.7(56), 3.8(57)$, and 4.1 and $4.6 \mathrm{~Hz}(\mathbf{5 8}))$ are similar to the values for tetra- $O$-benzyl-D-gluconhydroximolactone [44] [60] and for the lactone oxime 21 which adopt a $B_{2,5}$ to ${ }^{1} S_{5}$ conformation and indicate the presence of an $\mathrm{sp}^{2}$-configurated $\mathrm{C}(1)$. The signal of $\mathrm{H}-\mathrm{C}(5)$ appears at a relatively low field ( $4.67(\mathbf{5 6}), 4.70$ ( 57 ), and $4.7-4.6 \mathrm{ppm}(\mathbf{5 8})$ ) as for the corresponding hydroximolactone derivatives. Since 56 and 57 have a $C_{2}$ axis, the two pyranosylidene moieties give rise to only one set of signals in the NMR spectra, whereas 58 shows two sets (Table 2). The CI-MS spectra of 56 and 57 are characterized by

[^3]$[M+1]^{+}$at $m / z$ 1073.6. Acidic hydrolysis of 56 gave 2,3,4,6-tetra- $O$-benzyl-D-gluconolactone. The constitution of the pivaloylated lactone azine 60 is evidenced by elemental analysis, the MS, showing $[M+1]^{+}$at $m / z 1025$, and the absence of a signal for an anomeric $H$ in the ${ }^{1} H-N M R$ spectrum. The azine function is characterized by an IR band at $1660 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$-NMR spectrum shows the typical coupling constants (Table 2) of a flattened ${ }^{4} C_{1}$. The IR bands of 61 at 3440,1660 , and $1495 \mathrm{~cm}^{-1}$ evidence the presence of an acetamido group. The band at $1660 \mathrm{~cm}^{-1}$ is very broad due to the absorption of the $\mathrm{C}=\mathrm{N}$ bond. The signals at $m / z 791\left([M+1]^{+}\right)$and $683\left([M-\mathrm{OBn}]^{+}\right)$in the CI-MS are in agreement with a molecuiar formula of $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{10}$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra (Tables 2 and 3 ) show only one set of signals, in agreement with a symmetric structure of $\mathbf{6 1}$. The chemical shift of $\mathbf{H - C ( 2 )}$ $(4.79 \mathrm{ppm})$ is typical for a lactone derivative; $\mathrm{H}-\mathrm{C}(2)$ of the corresponding hydroximolactone resonates at 4.89 ppm [29]. The coupling constants evidence a flattened ${ }^{4} C_{1}$ conformation.

The ${ }^{13} \mathrm{C}$-NMR chemical shift values for $\mathrm{C}(1)$ (149.2 (56), 163.7 (57), 148.2 (60) and $149.1 \mathrm{ppm}(61)$ ) confirm the sp $^{2}$-hybridization. By analogy to the $\delta$ values for $\mathrm{C}(1)$ of a $(Z)$ - and ( $E$ )-hydroximolactone phosphate ( 157.3 and 169.3 ppm , resp.) [29], of ( $Z$ )- and ( $E$ )-hydroximolactones ( 150.2 and 158.6 ppm , resp.) [45], and ( $Z$ )- and ( $E$ )-lactone tosylimines ( 171.4 and 176.5 ppm , resp.) [ 94$]$, the ( $Z, Z$ )-configuration is assigned to $\mathbf{5 6}, 60$, and $\mathbf{6 1}$ and the ( $E, E$ )-configuration to 57 . This assignment is also in agreement with the $\mathrm{C}(1)$ chemical shift of a gluconolactone semicarbazone ( 147.9 ppm ), of which the ( $Z$ )-configuration was determined by X-ray analysis [95]. In addition, the signal for $\mathrm{C}(2)$ of the ( $E, E$ )-azine 57 is shifted upfield by $6.6 \mathrm{ppm}(\gamma$-effect), whereas $\mathrm{C}(2)$ of $\mathbf{6 0}$ and $\mathbf{6 1}$ exhibits similar chemical shifts as for the corresponding lactone oximes. $\mathrm{H}-\mathrm{C}(2)$ of 57 resonates at lower field than $\mathrm{H}-\mathrm{C}(2)$ of $56(\Delta \delta=1.34 \mathrm{ppm})$. This is again similar to what is found for hydroximolactones [44] [96] and related lactone hydrazones 13 [94] [108]. In the ( $E, Z$ )-azine 58, $\mathrm{H}-\mathrm{C}(2)$ of the $(E)$-configurated moiety resonates at 5.42 ppm and $\mathrm{H}-\mathrm{C}(2)$ of the $(Z)$-configurated moiety at 4.19 ppm , in agreement with the values for the $(E, E)$-isomer on the one hand and the $(Z, Z)$-isomer on the other hand.

We thank the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basle, for generous support.

## Experimental Part

General. See [29]. UV Spectra (determination of the kinetic parameters): MeOH solns., Photal-MCPD-1100 spectrometer, immersion cell. ${ }^{\text {'H-NMR: in ambiguous cases, signal assignment by homonuclear decoupling }}$ experiments. Mass spectra: Cl (chemical ionization; $\mathrm{NH}_{3}$ ), in special cases (indicated) by ESI (electrospray ionization).
(E/Z)-2,3,4,6-Tetra-O-pivaloyl-D-glucose Oxime $(=(E / Z)-2,3,4,6-T e t r a k i s-O-(2,2-d i m e t h y l p r o p a n o y l)-D-$ glucose Oxime; 11). A soln. of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(8 \mathrm{~g}, 115.12 \mathrm{mmol})$ in pyridine ( 31 ml ) and $\mathrm{H}_{2} \mathrm{O}(31 \mathrm{ml})$ was added dropwise to a soln. of $10(15.7 \mathrm{~g}, 30.39 \mathrm{mmol})$ [ 40$]$ in THF $(170 \mathrm{ml})$ and $\mathrm{MeOH}(55 \mathrm{ml})$. The mixture was stirred for 3 d at $50^{\circ}$, concentrated to a small volume, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The org. phase was washed with $5 \%$ aq. HCl soln., sat. aq. $\mathrm{NaHCO}_{3}$ soln., and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 2$ ) afforded $11(14.1 \mathrm{~g}$, $87 \% ;(E) /(Z) 3: 1)$. Colorless foam. $R_{\mathrm{f}}$ (hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 2\right) 0.39 .[\alpha]_{\mathrm{D}}^{25}=+54.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$ : $3580 \mathrm{w}, 3560 \mathrm{w}$ (sh), 3380 w (br.), 2980s, $2940 \mathrm{~m}, 2910 \mathrm{~m}, 2880 \mathrm{~m}, 1735 \mathrm{~s}, 1720 \mathrm{~s}$ (sh), $1690 \mathrm{w}, 1480 \mathrm{~s}, 1460 \mathrm{~m}, 1400 \mathrm{~m}$, $1360 \mathrm{~m}, 1280 \mathrm{~s}, 1150 \mathrm{~s}, 1070 \mathrm{w}, 1035 \mathrm{~m}, 990 \mathrm{w}, 995 \mathrm{w}(\mathrm{sh}), 940 \mathrm{~m}, 885 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.01$ (br. $s$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, 0.25 \mathrm{H}$ ), 7.70 (br. $s$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, 0.75 \mathrm{H}, \mathrm{NOH}$ ); $7.35(d, J=5.0,0.75 \mathrm{H}), 6.58$ $(d, J=6.1,0.25 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 6.06(t, J=6.2,0.25 \mathrm{H}), 5.48(d d, J=5.9,8.4,0.75 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 5.67(d d, J=3.9$, $6.3,0.25 \mathrm{H}), 5.64(d d, J=1.9,8.4,0.75 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 5.14(d d, J=1.9,8.8,0.75 \mathrm{H}), 5.11(d d, J=3.8,8.0,0.25 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(4)) ; 4.17(d d, J=2.6,11.9,0.25 \mathrm{H}), 4.14(d d, J=2.4,12.0,0.75 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)) ; 3.99(d d, J=5.5,12.0$, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.77(m, 0.25 \mathrm{H}), 3.66(\mathrm{~m}, 0.75 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 3.13\left(d, J=5.4\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.75 \mathrm{H}\right), 2.99(d$, $J=5.5$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.25 \mathrm{H}, \mathrm{OH}-\mathrm{C}(5)$ ); $1.23-1.17$ (several $s, 4 t-\mathrm{Bu}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): (E)-isomer: $178.59(s) ; 178.29(s) ; 176.92(s) ; 176.79(s) ; 145.68(s) ; 70.21(d) ; 69.58(d) ; 68.89(d) ; 68.36(d) ; 64.39$ (t); 39.19-38.90 (several s); 27.13-26.98 (several q); (Z)-isomer: $178.70(s) ; 177.82(s) ; 177.01(s) ; 176.87(s)$; $146.21(s) ; 69.97(d) ; 69.88(d) ; 68.85(d) ; 65.19(d) ; 64.65(t)$ CI-MS: $533(14), 532\left(44,[M+1]^{+}\right), 515(23), 514$ (84), 499 (32), 431 (26), 430 (100), 412 (13), 385 (14), 328 (17), 103 (10). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{10}(531.65): \mathrm{C}$ 58.74, H $8.53, \mathrm{~N} 2.63$; found: C 58.88 , H 8.65, N 2.88 .

2,3,4,6-Tetra-O-pivaloyl-D-gluconhydroximo-1,5-lactone (12). A soln. of $11(10.1 \mathrm{~g}, 18.81 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ at $-20^{\circ}$ was treated under $\mathrm{N}_{2}$ with DBU ( $3.07 \mathrm{ml}, 20.61 \mathrm{mmol}$ ). NCS ( $2.77 \mathrm{~g}, 20.7 \mathrm{mmol}$ ) was added in small portions over 5 min . The mixture was stirred for 10 min at $-20^{\circ}$, warmed to r.t., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 200 ml ), and washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. FC (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:1)
yielded $12(7.9 \mathrm{~g}, 79 \%)$. Coloriess hygroscopic foam. $R_{\mathrm{f}}$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ : $\left.: 2\right) 0.54 .[\alpha]_{\mathrm{D}}^{25}=+63.1\left(c=1.03, \mathrm{CHCl}_{3}\right)$. IR ( $\mathrm{CHCl}_{3}$ ): $3580 \mathrm{~m}, 3450 \mathrm{w}$ (br.), 3340w (br.), 3030 w (sh), $2970 \mathrm{~s}, 2930 \mathrm{~m}, 2910 \mathrm{~m}, 2870 \mathrm{~m}, 1755 \mathrm{~s}$ (sh), 1740s, 1720 s (sh), 1700 m (sh), $1680 \mathrm{~m}, 1480 \mathrm{~m}, 1460 \mathrm{~m}, 1395 \mathrm{~m}, 1365 \mathrm{~m}, 1340 \mathrm{w}, 1265 \mathrm{~s}, 1150 \mathrm{~s}(\mathrm{sh}), 1130 \mathrm{~s}, 1095 \mathrm{~s}$ (sh), $1030 \mathrm{~m}, 1000 \mathrm{~m}$, $985 m, 950 \mathrm{~m}$ (sh), $940 \mathrm{~m}, 900 \mathrm{w}, 880 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 6.69$ (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NOH}$ ); $5.73(d$, $J=7.3, \mathrm{H}-\mathrm{C}(2)) ; 5.45(t, J=7.6, \mathrm{H}-(3)) ; 5.33(d d, J=7.7,10.2, \mathrm{H}-(4)) ; 4.15(d d, J=1.9,12.8, \mathrm{H}-\mathrm{C}(6)) ; 4.08$ $\left(d d, J=4.1,12.8, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.64(d d d, J=1.9,4.1,10.2, \mathrm{H}-\mathrm{C}(5)) ; 1.20(s), 1.16(s), 1.11(s), 1.07(s, 4 t-\mathrm{Bu})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.77$ (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NOH}$ ); $5.45(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)$ ); $5.25(\mathrm{~m}, \mathrm{H}-\mathrm{C}(3)$, $\mathrm{H}-\mathrm{C}(4)) ; 4.42(m, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)) ; 4.23\left(d d, J=4.5,13.1, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 1.23(s), 1.22(s), 1.18(s), 1.17(s, 4 t-\mathrm{Bu})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.63(\mathrm{~s}) ; 176.58(\mathrm{~s}) ; 176.07(\mathrm{~s}) ; 148.47(\mathrm{~s}) ; 75.33(\mathrm{~d}) ; 72.22(\mathrm{~d}) ; 68.00(\mathrm{~d}) ; 67.38(\mathrm{~d})$; $61.20(t) ; 38.98(s) ; 38.84(s) ; 38.74(s) ; 27.14(q) ; 27.09(q) ; 26.98(q) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 177.90(\mathrm{~s}) ;$ $176.49(s) ; 176.16(s) ; 175.96(s) ; 148.58(s) ; 74.93(d) ; 71.48(d) ; 67.40(d) ; 67.27(d) ; 61.06(t) ; 38.91(s) ; 38.79(s) ;$ $38.68(\mathrm{~s}) ; 27.04(\mathrm{q}) ; 26.96(q) ; 26.93(q)$. Cl-MS: $531(29), 530\left(100,[M+1]^{+}\right), 107(57), 92(29), 91(16)$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{10} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$ (543.14): C 57.50, H 8.26, N 2.58 ; found: C 57.34, H 8.34, N 2.39.
(2,3,4,6-Tetra- O -pivaloyl-D-glucopyranosylidene ) amino Trifluoromethanesulfonate (13). $\mathrm{Et}_{3} \mathrm{~N}(5.97 \mathrm{ml}, 42.83$ $\mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(5.34 \mathrm{ml}, 32.54 \mathrm{mmol})$ were added through a syringe to a cooled $\left(0^{\circ}\right)$ soln. of $12(10.0 \mathrm{~g}, 18.88$ mmol) in benzene ( 700 ml ). The mixture was warmed to r.t., stirred for 30 min , and filtered through $\mathrm{SiO}_{2}(360 \mathrm{~g}$, toluene) to give pure (TLC) $13\left(11.54 \mathrm{~g}, 92 \%\right.$ ), which was recrystallized in MeOH . Colorless tine needles. $R_{\mathrm{f}}$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:2) 0.72 M.p. $166^{\circ}$ (dec.). $[\alpha]_{\mathrm{D}}^{25}=+48.8\left(c=1.08, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 2970 \mathrm{~m}, 2940 \mathrm{~m}, 2910 \mathrm{~m}$, $2870 w, 1745 s, 1720 m$ (sh), 1650 w (br)., $1480 \mathrm{~m}, 1460 \mathrm{~m}, 1425 \mathrm{~s}, 1400 \mathrm{~m}, 1365 \mathrm{~m}, 1275 \mathrm{~m}, 1150 \mathrm{~s}$ (sh), $1135 \mathrm{~s}, 1115 \mathrm{~s}$ (sh), 1030 m (sh), 1010 m (sh), $990 w(\mathrm{sh}), 940 w, 885 w(\mathrm{sh}), 850 s, 830 \mathrm{~m}$ (sh). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.45(d, J=7.7$, $\mathrm{H}-\mathrm{C}(2)) ; 5.41(t, J=7.8, \mathrm{H}-\mathrm{C}(3)) ; 5.10(d d, J=7.8,10.0, \mathrm{H}-\mathrm{C}(4)) ; 4.00(d d, J=5.2,12.9, \mathrm{H}-\mathrm{C}(6)) ; 3.92(d d$, $\left.J=2.0,12.9, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.64(d d d, J=2.0,5.2,10.1, \mathrm{H}-\mathrm{C}(5)) ; 1.16(s), 1.06(s), 1.03(s, 4 t-\mathrm{Bu}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 5.52(d, J=5.9, \mathrm{H}-\mathrm{C}(2)) ; 5.34(1, J=6.0, \mathrm{H}-\mathrm{C}(3)) ; 5.26(d d, J=6.0,9.7, \mathrm{H}-\mathrm{C}(4)) ; 4.64(d d d$, $J=2.0,4.2,9.7, \mathrm{H}-\mathrm{C}(5)) ; 4.39(d d, J=2.0,13.0, \mathrm{H}-\mathrm{C}(6)) ; 4.27\left(d d, J=4.3,13.0, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 1.24(s), 1.19(s)$, $1.17\left(s, 4 t\right.$-Bu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.54(s) ; 176.39(s) ; 175.92(s) ; 159.11(s) ; 77.99(d) ; 70.37(d) ; 66.90$ $(d) ; 66.04(d) ; 60.75(t) ; 38.82(s) ; 38.74(s) ; 27.02(q) ; 26.96(q) ; 26.85(q) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.65$ $(s) ; 176.28(s) ; 176.06(s) ; 175.61(s) ; 158.33(s) ; 118.64\left(q, J=322.0, \mathrm{CF}_{3}\right) ; 77.20(d) ; 70.27(d) ; 66.71(d) ; 66.50$ (d); $60.30(t) ; 38.94(s) ; 38.88(s) ; 38.78(s) ; 38.74(s) ; 26.98(q) ; 26.90(q) ; 26.87(q) ; 26.84(q)$. CI-MS: $664(11)$, $663(30), 662\left(100,[M+i]^{+}\right), 514(14), 412(13), 310(48), 210(20), 208(21), 107(70), 103(57), 92(20), 91(22), 85$ (11). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{NO}_{12} \mathrm{~S}$ (661.69): C 49.01, H 6.40, N 2.12, S 4.85; found: C 49.13, H 6.28, N 2.36 , S 5.09 .

1,5-Anhydro-1-hydrazi-2,3,4,6-tetra-O-pivaloyl-D-glucitol (15). At-25 , a sat. soln. of $\mathrm{NH}_{3}$ in $\mathrm{MeOH}(95 \mathrm{ml})$ was added dropwise under $\mathrm{N}_{2}$ to a soln. of $13(9.38 \mathrm{~g}, 14.18 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(190 \mathrm{ml})$. The mixture was stirred at $-25^{\circ}$ for 2 h , kept at the same temp. for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, and washed with brine. The aq. Iayer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined org. phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. FC (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:1) afforded $15(5.36 \mathrm{~g}, 72 \%)$. Colorless foam. $R_{\mathrm{f}}$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:2) $0.50 .[\alpha]_{D}^{25}=+18.2\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$ : $3280 w, 2960 \mathrm{~m}, 2940 \mathrm{~m}$ (sh), 2910 w (sh), $2880 \mathrm{w}, 1740 \mathrm{~s}, 1720 \mathrm{~s}$ (sh), 1700 w (sh), $1480 \mathrm{~m}, 1460 \mathrm{~m}, 1400 \mathrm{w}, 1365 \mathrm{~m}, 1325 \mathrm{w}$, $1270 \mathrm{~m}, 1155 \mathrm{~s}$ (sh), 1135s, $1085 \mathrm{~m}, 1035 \mathrm{~m}, 1005 \mathrm{w}, 995 \mathrm{w}, 970 \mathrm{w}, 940 \mathrm{w}, 910 \mathrm{w}, 890 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.87$ $(d, J=9.6, \mathrm{H}-\mathrm{C}(2)) ; 5.47(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)) ; 4.18(d d, J=1.8,12.6, \mathrm{H}-\mathrm{C}(6)) ; 4.07(d d, J=4.6,12.6$, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.88(d d d, J=1.8,4.5,9.9, \mathrm{H}-\mathrm{C}(5)) ; 2.13\left(d, J=9.4\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 2.10(d, J=9.6$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 1.18(\mathrm{~s}), 1.15(\mathrm{~s}), 1.14(\mathrm{~s}), 1.03\left(s, 4 t\right.$-Bu). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.66(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(2)) ; 5.37(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)) ; 4.17(d d, J=2.0,12.5, \mathrm{H}-\mathrm{C}(6)) ; 4.12\left(d d, J=3.7,12.5, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.08(d d d$, $J=2.0,3.7,9.6, \mathrm{H}-\mathrm{C}(5)) ; 2.40(d, J=9.4, \mathrm{NH}) ; 2.29(d, J=9.4, \mathrm{NH}) ; 1.23(s), 1.15(s), 1.14(s), 1.12(s, 4 t-\mathrm{Bu})$. ${ }^{13} \mathrm{C}$-NMR ( $\left.50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.39(\mathrm{~s}) ; 176.87(\mathrm{~s}) ; 176.11(\mathrm{~s}) ; 175.67(\mathrm{~s}) ; 82.11(\mathrm{~s}) ; 75.06(\mathrm{~d}) ; 72.58(\mathrm{~d}) ; 67.78(\mathrm{~d})$; $66.26(d) ; 61.19(t) ; 38.90(s) ; 38.80(s) ; 38.61(s) ; 27.23(q) ; 27.15(q) ; 26.94(q) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $177.86(s) ; 177.05(s) ; 176.11(s) ; 81.70(s) ; 74.56(d) ; 71.80(d) ; 67.17(d) ; 65.79(d) ; 60.93(t) ; 38.85(s) ; 38.71(s) ;$ $38.64(s) ; 27.05(q) ; 26.98(q) ; 26.86(q)$. CI-MS: $530(28), 529\left(100,[M+1]^{+}\right), 456(6), 427(7), 385(6), 325(6), 133$ (6), 117 (13), 103 (13). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{9}$ (528.65): C 59.07, H 8.39, N 5.30; found: C $59.18, \mathrm{H} 8.60, \mathrm{~N} 5.12$.

1,5-Anhydro-1-azi-2,3,4,6-tetra-O-pivaloyl-D-glucitol (4). A precooled ( $0^{\circ}$ ) soln. of $\mathrm{I}_{2}(0.65 \mathrm{~g}, 2.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise under $\mathrm{N}_{2}$ over 10 min through a syringe to a cooled $\left(0^{\circ}\right)$ soln. of $15(1.0 \mathrm{~g}, 1.89$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{ml}, 21.6 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The soln. was stirred for 30 min at $0^{\circ}$ and washed with cold $5 \%$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ soln. and cold $\mathrm{H}_{2} \mathrm{O}$. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dried at $0^{\circ} / 10^{-2}$ mbar for 30 min . $\mathrm{FC}(10 \mathrm{~g}$, AcOEt/hexane $1: 7)$ afforded $4(919 \mathrm{mg}, 92 \%)$ as a glassy oil after drying at $0^{\circ} / 10^{-2} \mathrm{mbar}$ for $2 \mathrm{~h} . R_{\mathrm{r}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 2\right) 0.76 .[\alpha]_{\mathrm{D}}^{25}=+87.2\left(c=1.01, \mathrm{CHCl}_{3}\right)$, UV $\left(\mathrm{CHCl}_{3}\right): 252(176), 340(82)$, 351 (sh, 53). $\mathrm{CD}\left(c=6.76 \mathrm{~mm}, \mathrm{CHCl}_{3}\right): 353(1.82), 341$ (1.65), $308(0), 296(-0.15), 270(0), 249(0.22)$. FT-1R $\left(c=3.46, \mathrm{CHCl}_{3}\right): 3030 w, 2976 s, 2937 m, 2909 m, 2874 m, 1741 s, 1568 w, 1480 s, 1462 m, 1399 m, 1371 m, 1331 w$,
$1280 s, 1132 s, 1090 m, 1036 m, 994 w, 960 w, 942 w, 892 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.68(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))$; 5.39 ( $m$, irrad. at $3.45 \rightarrow d, J=8.2, \mathrm{H}-\mathrm{C}(4)$ ); $3.94(d d, J=4.7,12.8, \mathrm{H}-\mathrm{C}(6)) ; 3.84\left(d d, J=1.8,12.7, \mathrm{H}^{\prime}-\mathrm{C}(6)\right)$; $3.45(d d d, J=1.8,4.7,10.3, \mathrm{H}-\mathrm{C}(5)) ; 1.12(s), 1.11(s), 1.10(s), 0.92(s, 4 t-\mathrm{Bu}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.62$ $(t, J=9.0, \mathrm{H}-\mathrm{C}(3)) ; 5.56(d, J=8.7, \mathrm{H}-\mathrm{C}(2)) ; 5.35$ (br. $t, J=8.9, \mathrm{H}-\mathrm{C}(4)) ; 4.10-4.00(m, 2 \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(5))$; $1.18(s), 1.17(s), 1.12(s), 1.00(s, 4 t-\mathrm{Bu}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.05(\mathrm{~s}) ; 176.51(\mathrm{~s}) ; 175.92(\mathrm{~s}) ; 175.21(\mathrm{~s}) ;$ $74.70(\mathrm{~d}) ; 72.64(\mathrm{~d}) ; 67.45(\mathrm{~d}) ; 65.59(\mathrm{~d}) ; 60.83(t) ; 56.41(\mathrm{~s}) ; 38.80(\mathrm{~s}) ; 38.74(\mathrm{~s}) ; 38.49(\mathrm{~s}) ; 27.17(q) ; 27.07(q)$; $26.73(q) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.84(\mathrm{~s}) ; 176.78(\mathrm{~s}) ; 176.11(s) ; 175.74(s) ; 74.03(d) ; 71.53(d) ; 66.64(d)$; $64.78(d) ; 60.44(t) ; 55.92(s) ; 38.67(s) ; 38.62(s) ; 38.57(s) ; 38.31(s) ; 26.89(q) ; 26.82(q) ; 26.45(q)$. CI-MS: 517 (13), $516\left(45,\left[M-\mathrm{N}_{2}+\mathrm{NH}_{4}\right]^{+}\right), 415(22), 414\left(100,\left[M-\mathrm{N}_{2}-\mathrm{OPiv}+\mathrm{NH}_{4}\right]^{+}\right), 296$ (10), 295 (63), 102 (20). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{9}$ (526.63): C $59.30, \mathrm{H} 8.04$, N 5.32 ; found: C $59.42, \mathrm{H} 7.91, \mathrm{~N} 5.06$.

Methanolysis of 4 . A soln. of $4(699 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was stored for 6 h at r.t. Evaporation and FC (hexane $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$ ) gave $\mathbf{1 6}(519 \mathrm{mg}, 59 \%)$ and $\mathbf{1 7}(88 \mathrm{mg}, 10 \% ; \alpha-\mathrm{D} / \beta$-D $85: 15)$.

Methyl 2,3,4,6-Tetra-O-pivaloyl- $\alpha$-D-glucopyranoside [66] (16): $R_{\mathrm{f}}$ (hexane/Et $\mathrm{E}_{2} \mathrm{O}$ 1:2) 0.76. IR ( $\mathrm{CHCl}_{3}$ ): $3080 w, 3050 \mathrm{w}, 3020 w^{\prime}(\mathrm{sh}), 2960 \mathrm{~s}, 2930 \mathrm{~s}$ (sh), 2900 m (sh), $2870 \mathrm{~m}, 1735 \mathrm{~s}, 1555 \mathrm{w}, 1540 \mathrm{w}, 1520 \mathrm{w}, 1480 \mathrm{~s}, 1460 \mathrm{~s}, 1395 \mathrm{~s}$, $1370 \mathrm{~s}, 1325 m(\mathrm{sh}), 1280 \mathrm{~s}, 1225 m$ (sh), 1190 s (sh), 1165 s (sh), 1135 s (br.), $1080 \mathrm{~s}, 1055 \mathrm{~s}, 1035 \mathrm{~s}, 1000 \mathrm{w}, 980 \mathrm{~m}, 940 \mathrm{w}$, $920 \mathrm{~m}, 890 \mathrm{~m}, 850 \mathrm{w}, 805 \mathrm{w}, 790 \mathrm{w}, 760 \mathrm{~m}, 690 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.90(t, J=9.8$, irrad. at $5.00 \rightarrow d$, $J=9.4, \mathrm{H}-\mathrm{C}(3)) ; 5.33(d d, J=9.6,10.2, \mathrm{H}-\mathrm{C}(4)) ; 5.00(d d, J=3.8,10.2, \mathrm{H}-\mathrm{C}(2)) ; 4.91(d, J=3.8$, irrad. at $5.00 \rightarrow s, \mathrm{H}-\mathrm{C}(1)) ; 4.22(d d, J=1.9,12.3, \mathrm{H}-\mathrm{C}(6)) ; 4.13\left(d d, J=5.1,12.2, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.91(d d d, J=1.8,5.0,10.3$, $\mathrm{H}-\mathrm{C}(5)) ; 2.95(s, \mathrm{MeO}) ; 1.19(s), 1.16(s), 1.14(s, 4 t-\mathrm{Bu}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.24(s) ; 177.04(s) ;$ $176.57(s) ; 176.26(s) ; 96.95(d) ; 71.57(d) ; 70.06(d) ; 68.26(d) ; 68.13(d) ; 62.02(t) ; 55.13(q) ; 38.87(s) ; 38.76(s) ;$ $27.34(q) ; 27.24(q) ; 27.16(q) ; 27.11(q)$ CI-MS: $550(6), 549(32), 548\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 499\left(7,\left[M-\mathrm{MeO}^{+}\right)\right.$.

Methyl 2,3,4,6-Tetra-O-pivaloyl- $\beta$ - D -glucopyranoside (17): $R_{\mathrm{f}}$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 2$ ) 0.71. IR $\left(\mathrm{CHCl}_{3}\right): 3000 w$ (sh), $2960 \mathrm{~m}, 2930 \mathrm{~m}, 2920 \mathrm{~m}$ (sh), 2900 m (sh), 2870w, $1740 \mathrm{~s}, 1555 \mathrm{w}, 1540 \mathrm{w}, 1520 \mathrm{w}, 1480 \mathrm{~s}, 1460 \mathrm{~s}, 1395 \mathrm{~m}, 1365 \mathrm{~m}$, $1280 \mathrm{~s}, 1260 \mathrm{~m}(\mathrm{sh}), 1230 \mathrm{~m}, 1205 \mathrm{~m}(\mathrm{sh}), 1180 \mathrm{~s}(\mathrm{sh}), 1160 \mathrm{~s}(\mathrm{sh}), 1140 \mathrm{~s}(\mathrm{sh}), 1100 \mathrm{~s}(\mathrm{sh}), 1065 \mathrm{~s}, 1045 \mathrm{~s}, 1035 \mathrm{~s}$ (sh), $1005 m, 940 \mathrm{w}, 910 \mathrm{w}, 890 \mathrm{~m}, 800 \mathrm{~m}$ (br.), $760 \mathrm{~m}, 660 \mathrm{w}, 645 \mathrm{w}, 610 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.37(t, J=9.5$, $\mathrm{H}-\mathrm{C}(3)) ; 5.27(d d, J=8.0,9.6$, irrad. at. $3.89 \rightarrow d, J=9.6, \mathrm{H}-\mathrm{C}(2)) ; 5.20(t, J \approx 9.7, \mathrm{H}-\mathrm{C}(4)) ; 4.21(d d, J=1.8$, $12.2, \mathrm{H}-\mathrm{C}(6)) ; 4.02\left(d d, J=5.5,12.2, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.89(d, J=7.9, \mathrm{H}-\mathrm{C}(1)) ; 3.17(d d d, J=1.8,5.4,10.2, \mathrm{H}-\mathrm{C}(5))$;

Table 2. Selected ${ }^{l} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts $[\mathrm{ppm}]$ and Coupling Constants $[\mathrm{Hz}]$ of 4-9, 11-40, 43-49, 54-58, 60, and 61

|  | (E)-11 | (Z)-11 | 12 ${ }^{\text {a }}$ ) |  | 13 ${ }^{\text {a }}$ ) | 15 ${ }^{\text {a }}$ ) | $4^{\text {a }}$ ) | 4 | $16^{\text {a }}$ ) | 17 ${ }^{\text {a }}$ ) | $60^{\text {a }}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{C}(1)$ | 7.35 | 6.58 | - |  | - | - | - | - | 4.91 | 3.89 | - |
| $\mathrm{H}-\mathrm{C}(2)$ | 5.48 | 6.06 | 5.73 |  | 5.45 | 5.87 | 5.68 | 5.56 | 5.00 | 5.27 | 5.72 |
| $\mathrm{H}-\mathrm{C}(3)$ | 5.64 | 5.67 | 5.45 |  | 5.41 | 5.47 | 5.68 | 5.62 | 5.90 | 5.37 | 5.57 |
| $\mathrm{H}-\mathrm{C}(4)$ | 5.14 | 5.11 | 5.33 |  | 5.10 | 5.47 | 5.39 | 5.35 | 5.33 | 5.20 | 5.39 |
| $\mathrm{H}-\mathrm{C}(5)$ | 3.66 | 3.77 | 3.64 |  | 3.64 | 3.88 | 3.45 | 4.10-4.00 | 3.91 | 3.17 | 3.76 |
| $\mathrm{H}-\mathrm{C}(6)$ | 4.14 | 4.17 | 4.15 |  | 4.00 | 4.18 | 3.94 | $4.10-4.00$ | 4.22 | 4.21 | 4.25-4.20 |
| $\mathrm{H}^{\prime}-\mathrm{C}(6)$ | 3.99 | 3.99 | 4.08 |  | 3.92 | 4.07 | 3.84 | 4.10-4.00 | 4.13 | 4.02 | 4.25-4.20 |
| MeO | - | - | - |  | - | - | -- | - | 2.95 | 3.16 | - |
| OH or | 7.70 | 8.01 | - |  | - | $2.13{ }^{\text {b }}$ ) | ) | - | - | - | - |
| NH | 3.13 | 2.99 |  |  |  | $2.10^{\text {b }}$ ) |  |  |  |  |  |
| $J(1,2)$ | 5.9 | 6.1 | - |  | - | - | - | - | 3.8 | 8.0 | - |
| $J(2,3)$ | 8.4 | 6.3 | 7.3 |  | 7.7 | 9.6 | ${ }^{\text {c }}$ ) | 8.7 | 10.2 | 9.6 | 8.1 |
| $J(3,4)$ | 1.9 | 3.9 | 7.7 |  | 7.8 | ${ }^{\text {c }}$ ) | 8.2 | 9.0 | 9.6 | 9.5 | 8.5 |
| $J(4,5)$ | 8.8 | 8.0 | 10.2 |  | 10.0 | 9.9 | 10.3 | 9.0 | 10.2 | 10.2 | 10.1 |
| $J(5,6)$ | 2.4 | 2.6 | 1.9 |  | 5.2 | 1.8 | 4.7 | ${ }^{\text {c }}$ ) | 1.9 | 1.8 | 2.2 |
| $J\left(5,6^{\prime}\right)$ | 5.5 | 5.5 | 4.1 |  | 2.0 | 4.6 | 1.8 | ${ }^{\text {c }}$ ) | 5.1 | 5.5 | 3.3 |
| $J\left(6,6^{\prime}\right)$ | 12.0 | 11.9 | 12.8 |  | 12.9 | 12.6 | 12.8 | ${ }^{\text {c }}$ ) | 12.3 | 12.2 | ${ }^{\text {c }}$ ) |
|  | $\alpha$-D-18 | $\beta$-D-18 |  | $\alpha-\mathrm{D}-19$ |  | $\beta$-D-19 | (E)-20 | ( V $^{\text {-20 }}$ | 21 | 21 ${ }^{\text {d }}$ ) | 22 ${ }^{\text {d }}$ ) |
| $\mathrm{H}-\mathrm{C}(1)$ | 4.79 | 4.56 |  | $5.19^{\text {e }}$ ) |  | ${ }^{\text {c }}$ ) | 7.49 | 6.93 | - | - | - |
| $\mathrm{H}-\mathrm{C}(2)$ | 3.56 | 3.49 |  | 3.59 |  | 3.41 | 4.45 | 4.45 | 4.06 | 4.10 | 4.16 |
| $\mathrm{H}-\mathrm{C}(3)$ | 4.06 | 3.74 |  | 4.00 |  | 3.69 | 3.98-3.85 | 3.98-3.85 | 4.00 | 3.99 | 3.58 |

Table 2 (cont.)

|  | $\alpha$-D-18 | $\beta$-D-18 | $\alpha-\mathrm{d}-19$ | $\beta$-D-19 | (E)-20 | ( $Z$ )-20 | 21 | 21 ${ }^{\text {d }}$ ) | 22 ${ }^{\text {d }}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{C}(4)$ | 3.59 | 3.67 | 3.775 | 3.77 | 3.68 | 3.72 | 3.865 | 3.73 | 4.41 |
| $\mathrm{H}-\mathrm{C}(5)$ | 3.88 | 3.39 | 4.07 | 3.45 | 3.98-3.85 | 3.98-3.85 | 4.60-4.51 | 4.51 | 3.50 |
| $\mathrm{H}_{\mathrm{cq}}-\mathrm{C}(6)$ | 4.24 | 4.33 | 4.33 | 4.28 | 4.20 | 4.21 | $4.60-4.51$ | 4.37 | 4.25 |
| $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)$ | 3.68 | 3.78 | 3.65 | 3.68 | 3.48 | 3.50 | 3.85 | 3.62 | 3.66 |
| ArCH | 5.51 | 5.53 | 5.52 | 5.53 | 5.33 | 5.37 | 5.52 | 5.27 | 5.37 |
| MeO | 3.82 | 3.81 | 3.82 | 3.82 | 3.79 | 3.79 | 3.82 | 3.48 | 3.49 |
| OH or | - | - | $3.10^{\text {e }}$ ) | $3.23{ }^{\text {f }}$ ) | 7.59-7.55, | 7.80-7.75, | 7.07 | 6.51 | 6.66 |
| NH |  |  |  |  | 2.00 | 2.14 |  |  |  |
| MsO | - | - | - | - | - | - | - | - | - |
| $J(1,2)$ | 3.7 | 7.7 | 3.7 | 7.7 | 7.8 | 7.1 | - | - | - |
| $J(2,3)$ | 9.3 | 8.6 | 8.9 | 8.4 | 6.7 | ${ }^{\text {c) }}$ | 0.7 | 0.7 | 3.7 |
| $J(3,4)$ | 9.3 | 9.0 | 9.2 | 9.5 | 3.4 | 3.5 | 6.6 | 6.6 | 10.0 |
| $J(4,5)$ | 9.7 | 9.9 | 9.6 | 9.1 | 9.3 | 9.3 | 9.5 | 10.1 | 9.4 |
| $J(5,6 \mathrm{eq})$ | 4.8 | 5.0 | 5.0 | 4.9 | 5.2 | 5.2 | ${ }^{\text {c }}$ ) | 5.3 | 4.6 |
| $J(5,6 \mathrm{ax})$ | 10.1 | 10.3 | 10.2 | 9.8 | 10.3 | 10.3 | 10.1 | 10.1 | 10.2 |
| $J$ (6eq, 6ax) | 10.2 | 10.5 | 10.4 | 10.2 | 10.7 | 10.6 | 10.5 | 10.5 | 10.1 |
|  | $23^{\text {d }}$ ) | 24 ${ }^{\text {d }}$ ) | 25 | 5 | $\alpha$-D-26 | $\beta$-D-27 | 288) | 298) | 30 ${ }^{\text {d }}$ ) |
| $\mathrm{H}-\mathrm{C}(1)$ | - | - | - | - | 4.59 | 4.35 | - |  | $6.18{ }^{\text {h }}$ ) |
| $\mathrm{H}-\mathrm{C}(2)$ | 4.12 | 4.15 | 4.11 | 4.13 | 3.55 | 3.44 | 4.62 | 4.02 | 4.71 |
| $\mathrm{H}-\mathrm{C}(3)$ | 3.98 | 3.54 | 3.88-3.80 | 4.07 | 4.04 | 3.67 | 3.96 | 3.98 | $4.26{ }^{\text {h }}$ ) |
| H-C(4) | 3.66 | 4.33 | 3.88-3.80 | 3.85-3.82 | 3.585 | 3.74 | 3.92 | 3.88 | 3.93 |
| H-C(5) | 4.49 | 3.46 | 3.88-3.80 | 3.85-3.82 | 3.87-3.78 | 3.44-3.38 | 4.50-4.41 | 4.37 | 3.77 |
| $\mathrm{H}_{\text {eq }}-\mathrm{C}(6)$ | 4.23 | 4.135 | 4.33 | 4.21-4.18 | 4.25 | 4.35 | $4.50-4.41$ | 4.56 | 4.21 |
| $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)$ | 3.48 | 3.53 | 3.73 | 3.65 | 3.69 | 3.78 | 3.76 | 3.86 | 3.62 |
| ArCH | 5.21 | 5.27 | 5.57 | 5.56 | 5.56 | 5.56 | 5.53 | 5.53 | 5.38 |
| MeO | 3.47 | 3.48 | 3.83 | 3.83 | 3.82, 3.40 | 3.82, 3.59 | 3.82 | 3.82 | 3.49 |
| OH or | - | - | $2.84{ }^{\text {b }}$ ), | - | - | - | - | - | - |
| NH |  |  | $2.34{ }^{\text {b }}$ ) |  |  |  |  |  |  |
| MsO | 2.72 | 2.71 | - | - | - | - | - | - | - |
| $J(1,2)$ | - | - | - | - | 3.7 | 7.6 | - | - | 6.0 |
| $J(2,3)$ | 0.7 | 3.8 | 8.1 | 8.5 | 9.4 | 8.9 | 0 | 2.2 | 2.0 |
| $J(3,4)$ | 6.6 | 9.8 | ${ }^{\text {c }}$ ) | 8.4 | 9.3 | 9.3 | 6.6 | 7.1 | 7.4 |
| $J(4,5)$ | 10.2 | 9.4 | ${ }^{\text {c }}$ ) | ${ }^{\text {c }}$ ) | 9.3 | 9.8 | 9.1 | 9.9 | 10.1 |
| $J(5,6 \mathrm{eq})$ | 5.4 | 3.7 | 4.0 | ${ }^{\text {c }}$ ) | 4.6 | 5.0 | ${ }^{\text {c }}$ ) | 5.2 | 5.0 |
| $J(5,6 a x)$ | 10.2 | 10.0 | 9.7 | 9.9 | 10.2 | 9.9 | 11.8 | 10.0 | 10.1 |
| $J$ (6eq,6ax) | 10.6 | 10.0 | 10.6 | 9.9 | 10.0 | 10.4 | 11.8 | 10.3 | 10.3 |


|  | $(E)-\mathbf{3 5}$ | $(Z)-\mathbf{3 5}$ | $\left.\mathbf{3 6}^{\mathrm{a}}\right)$ | $\left.\mathbf{3 7}^{\mathrm{a}}\right)$ | $\left.\mathbf{3 8 a}^{\mathrm{a}}\right)$ | $\left.\mathbf{3 8 b}^{\mathrm{a}}\right)$ | $\left.\mathbf{7}^{\mathbf{1}}\right)$ | $\left.\mathbf{4 0}^{\mathrm{a}}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{H}-\mathrm{C}(1)$ | 7.58 | 7.05 | - | - | - | - | - | 3.86 |
| $\mathrm{H}-\mathrm{C}(2)$ | 4.46 | 5.27 | 4.27 | 3.99 | 3.24 | 3.40 | 2.94 | 3.79 |
| $\mathrm{H}-\mathrm{C}(3)$ | 4.08 | 4.13 | 3.48 | 3.23 | 3.56 | 3.91 | 4.10 | 3.48 |
| $\mathrm{H}-\mathrm{C}(4)$ | 3.84 | $3.85-3.82$ | 4.45 | 4.27 | 4.45 | 4.42 | $4.40-4.36$ | 4.38 |
| $\mathrm{H}-\mathrm{C}(5)$ | $3.94-3.91$ | $4.06-4.03$ | 3.32 | 3.15 | 3.81 | 3.25 | $3.83-3.75$ | 3.15 |
| $\mathrm{H}_{\mathrm{cq}}-\mathrm{C}(6)$ | 4.25 | 4.27 | 4.04 | 3.93 | 4.11 | 4.04 | $4.19-4.12$ | 4.25 |
| $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)$ | 3.52 | 3.53 | 3.41 | 3.25 | 3.52 | 3.52 | $3.83-3.75$ | 3.69 |
| $\mathbf{P h C H}$ | 5.36 | 5.39 | 5.14 | 5.03 | 5.27 | 5.26 | 5.65 | 5.31 |
| OH or | 8.23, | 8.60, | 6.68 | - | $\left.2.35^{\mathrm{b}}\right)$, | $\left.1.82^{\mathrm{b}}\right)$, | - | - |
| NH | 2.06 | 2.46 |  |  | $\left.1.18^{\mathrm{b}}\right)$ | $\left.1.77^{\mathrm{b}}\right)$ |  |  |
| $J(1,2)$ | 7.8 | 7.1 | - | - | - | - | - | 0 |
| $J(2,3)$ | 6.2 | 4.8 | 3.7 | 3.7 | 3.2 | 3.2 | 3.6 | 3.0 |
| $J(3,4)$ | 2.9 | 3.8 | 10.0 | 10.0 | 9.8 | 9.8 | 9.9 | 9.9 |

Table 2 (cont.)

|  | $(E)-\mathbf{3 5}$ | $(Z)-\mathbf{3 5}$ | $\left.\mathbf{3 6}^{\mathrm{a}}\right)$ | $\left.\mathbf{3 7}^{\mathrm{a}}\right)$ | $\left.\mathbf{3 8 a}^{\mathbf{a}}\right)$ | $\left.\mathbf{3 8 b}^{\mathrm{a}}\right)$ | $\left.\mathbf{7}^{\mathrm{i}}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $J(4,5)$ | 9.5 | $\left.{ }^{\mathrm{c}}\right)$ | 9.6 | 9.5 | 9.4 | 9.4 | $\left.\mathbf{4 0}^{\mathrm{a}}\right)$ |
| $J(5,6 \mathrm{eq})$ | 5.2 | 5.3 | 4.5 | 4.6 | 4.9 | 4.9 | $\left.{ }^{\mathrm{c}}\right)$ |
| $J(5,6 \mathrm{ax})$ | 10.2 | 10.4 | 10.0 | 10.0 | 10.2 | 10.0 | 9.5 |
| $J(6 \mathrm{eq}, 6 \mathrm{ax})$ | 10.6 | 10.6 | 10.0 | 10.2 | 10.2 | 10.3 | $\left.{ }^{\mathrm{c}}\right)$ |


|  | (E)-43 | ( Z )-43 | 44 | 45 | 46 | 47a/47b | 8 | 48/49 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{C}(1)$ | 7.41 | 6.69 | 3.79 | - | - | - | - | 4.68, 4.71 |
| $\mathrm{H}-\mathrm{C}(2)$ | 5.00 | 5.26 | 4.05 | 4.86 | 4.68 | $4.65,4.25$ | 4.35 | 4.26, 3.45 |
| $\mathrm{H}-\mathrm{C}(3)$ | 4.06 | 4.25 | 3.51 | 3.78 | 3.80 | 3.61 | 3.77 | $\begin{aligned} & 3.79-3.59, \\ & 4.06 \end{aligned}$ |
| $\mathrm{H}-\mathrm{C}(4)$ | 3.71-3.59 | 3.71-3.59 | 3.62 | 3.89 | 3.89 | 3.94 | 3.94 | 3.79-3.59 |
| H-C(5) | 3.97-3.90 | 3.97-3.90 | 3.50 | 4.33 | 4.31 | 3.60 | 3.86 | 3.79-3.59 |
| H-C(6) | 3.71-3.59 | 3.71-3.59 | 3.74 | 3.78 | 3.76 | 3.75 | 3.76 | 3.79-3.59 |
| $\mathrm{H}^{\prime}-\mathrm{C}(6)$ | 3.71-3.59 | 3.71-3.59 | 3.67 | 3.74 | 3.71 | 3.68 | 3.64 | 3.79-3.59 |
| MeO | - | - | - | - | - | - | - | 3.33, 3.48 |
| AcN | 1.90 | 1.85 | 1.77 | 1.88 | 1.80 | 1.79, 1.82 | 1.64 | 1.84, 1.86 |
| OH or | 7.63, | 8.22, | 6.62 , | 7.33 | - | 2.33, $2.50{ }^{\text {b }}$ ), | -- | - |
| NH | 2.95 | 2.87 | 5.37 |  |  | $1.95,2.26^{\text {b }}$ ) |  |  |
| $\mathrm{AcN} H$ | 6.33 | 6.49 | 4.85 | 6.19 | 5.90 | 5.19, 6.07 | 4.88 | 5.29, 5.51 |
| $J(1,2)$ | 4.0 | 5.4 | 9.4 | - | - | -- | - | 3.7, 7.7 |
| $J(2,3)$ | 2.9 | 1.7 | 10.4 | 6.5 | 7.0 | 10.2, 6.6 | 8.5 | 10.1,9.5 |
| $J(3,4)$ | 5.2 | 4.7 | 8.5 | 6.3 | 6.6 | 8.8 | 7.0 | ${ }^{\text {c }}$ ), 7.9 |
| $J(4,5)$ | ${ }^{\text {c }}$ ) | ${ }^{\text {c }}$ ) | 9.6 | 6.2 | 7.3 | 9.9 | 7.5 | ${ }^{\text {c }}$ ) |
| $J(5,6)$ | ${ }^{\text {c }}$ ) | ${ }^{\text {c }}$ ) | 2.1 | 4.7 | 3.6 | 4.1 | 4.3 | ${ }^{\text {c }}$ ) |
| $J\left(5,6^{\prime}\right)$ | ${ }^{\text {c }}$ ) | ${ }^{\text {c }}$ | 5.3 | 4.1 | 4.0 | 2.1 | 3.2 | ${ }^{\text {c }}$ ) |
| $J\left(6,6^{\prime}\right)$ | ${ }^{\text {c }}$ ) | ${ }^{\text {c }}$ ) | 10.6 | 11.0 | 11.1 | 11.0 | 10.9 | ${ }^{\text {c }}$ ) |
| $J(2, \mathrm{NH})$ | 7.9 | 6.9 | 8.0 | 8.5 | 8.2 | 9.5, 8.3 | 8.1 | 9.3, 8.1 |


|  | $\mathbf{5 4}$ | $\mathbf{5 5}$ | $\mathbf{6 1}$ | $\mathbf{5 6}$ | $\mathbf{5 7}$ | $\mathbf{5 8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}-\mathrm{C}(1)$ | 4.61 | 4.55 | -- | - | - | - |
| $\mathrm{H}-\mathrm{C}(2)$ | 4.27 | $4.18-4.09$ | 4.79 | 4.28 | 5.64 | $4.19,5.72$ |
| $\mathrm{H}-\mathrm{C}(3)$ | 4.05 | $4.18-4.09$ | 4.41 | 3.93 | 3.94 | $3.94,3.97$ |
| $\mathrm{H}-\mathrm{C}(4)$ | 3.72 | 3.74 | 3.97 | 3.82 | $3.80-3.76$ | $3.92-3.77$ |
| $\mathrm{H}-\mathrm{C}(5)$ | $4.39-4.28$ | 4.10 | 4.43 | 4.62 | 4.70 | $4.70-4.30$ |
| $\mathrm{H}-\mathrm{C}(6)$ | $4.39-4.28$ | 4.41 | 4.25 | 3.72 | 3.86 | $3.92-3.77$ |
| $\mathrm{H}^{\prime}-\mathrm{C}(6)$ | $3.80-3.72$ | 3.81 | 3.75 | 3.72 | $3.80-3.76$ | $3.92-3.77$ |
| PhCH | 5.56 | 5.55 | 5.54 | - | - | - |
| MeO | 3.41 | 3.47 | - | - | - | - |
| AcN | 1.83 | 1.86 | 1.94 | - | - | - |
| AcNH | 5.99 | 5.70 | 6.27 | - | - | - |
| $J(1,2)$ | 4.5 | 8.1 | - | - | - | - |
| $J(2,3)$ | 3.7 | 9 | 3.0 | 1.7 | 1.7 | $2.2,1.5$ |
| $J(3,4)$ | 2.6 | 2.1 | 1.5 | 4.7 | 3.8 | $4.7,4.1$ |
| $J(4,5)$ | 9.4 | 9.5 | 9.8 | 10.3 | 10.1 | $\left.c^{c}\right)$ |
| $J(5,6)$ | $\left.{ }^{c}\right)$ | 5.1 | 5.1 | 3.2 | 1.9 | $\left.{ }^{c}\right)$ |
| $J\left(5,6^{\prime}\right)$ | $\left.{ }^{c}\right)$ | 10.3 | 10.4 | 3.2 | 4.5 | $\left.{ }^{c}\right)$ |
| $J\left(6,6^{\prime}\right)$ | $\left.c^{c}\right)$ | 10.4 | 10.4 | $\left.c^{c}\right)$ | 11.2 | $\left.c^{c}\right)$ |
| $J(2, \mathrm{NH})$ | 9.3 | 8.8 | 7.2 | - | - | - |

[^4] 1:1. $\left.{ }^{\text {e }}\right) J(1, \mathrm{OH})=2.1 \mathrm{~Hz} .{ }^{\text {f }}$ ) $J(1, \mathrm{OH})=5.5 \mathrm{~Hz} .{ }^{\text {g }}$ ) Same numbering as for 5 . ${ }^{\text {i }}$ ) $\operatorname{In} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\left.-40^{\circ} .{ }^{h}\right)^{4} J(1,3)$ $=1.5 \mathrm{~Hz}$.
$3.16(s, \mathrm{MeO}) ; 1.19(s), 1.16(s), 1.15(s), 1.15(s, 4 t-\mathrm{Bu}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) ; 177.45(s) ; 177.03(s) ; 176.16$ (2s); $102.14(d) ; 72.77(d) ; 72.54(d) ; 71.44(d) ; 68.35(d) ; 61.99(t) ; 56.25(q) ; 38.87(s) ; 38.80(s) ; 27.31(q) ; 27.16$ ( $q$ ). CI-MS: $550(5), 549(29), 548\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 499\left(13,[M-\mathrm{MeO}]^{+}\right)$.

Allyl 2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)- $\alpha / \beta$ - D -glucopyranoside (18). A $4: 1$ mixture of allyl $\alpha / \beta$ -D-glucopyranoside was transformed into a $4: 1$ mixture of $\alpha / \beta-\mathrm{D}-18$ by methoxybenzylidenation and benzylation [41]. FC ( 60 g, AcOEt/hexane 1:8) of a sample ( 841 mg ) gave crystalline $\beta-\mathrm{D}-18(66 \mathrm{mg})$, impure $\alpha-\mathrm{D}-18(44 \mathrm{mg}$, oil), and crystalline $\alpha-\mathrm{D}-18$ ( 522 mg ).

Data of $\alpha / \beta$-D-18 4:1: M.p. $85-95^{\circ}(\mathrm{AcOEt} / \mathrm{hexane})$. IR $\left(\mathrm{CHCl}_{3}\right): 3090 \mathrm{w}, 3070 \mathrm{w}, 3000 \mathrm{w}, 2930 \mathrm{~m}, 2870 \mathrm{~m}$, 2850 m (sh), $1615 \mathrm{~m}, 1590 \mathrm{w}$ (sh), $1515 \mathrm{w}, 1500 \mathrm{w}, 1455 \mathrm{~m}, 1370 \mathrm{~m}, 1305 \mathrm{~m}, 1170 \mathrm{~s}, 1085 \mathrm{~s}, 1030 \mathrm{~s}, 995 \mathrm{~s}, 935 \mathrm{~m}, 830 \mathrm{~m}$. ${ }^{13} \mathrm{C}$-NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\alpha$-D-anomer: $159.90(s) ; 138.77(s) ; 138.15(s) ; 133.57(d) ; 129.86(s) ; 128.29-127.23$ (several $d$ ); $118.16(t) ; 113.47(2 d) ; 101.13(d) ; 96.71(d) ; 82.09(d) ; 79.21(d) ; 78.53(d) ; 75.19(t) ; 73.46(t) ; 68.87$ ( $t$ ); $68.39(t) ; 62.49(d) ; 55.16(q) ; \beta$-D-anomer: $133.8(d) ; 117.4(t) ; 103.0(d) ; 100.9(d) ; 81.4(d) ; 80.8(d) ; 78.7(d) ;$ $75.3(t) ; 75.0(t) ; 70.6(t) ; 68.6(t) ; 66.0(d)$. CI-MS $\left(\mathrm{NH}_{3}\right): 520(38), 519\left(100,[M+1\}^{+}\right)$.

Data of $\alpha-\mathrm{D}-18 . R_{\mathrm{f}}(\mathrm{AcOEt} / \mathrm{hexane} 1: 6) 0.20 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.44-7.24$ ( $m, 12$ arom. H ); 6.92-6.88 ( $\mathrm{m}, 2$ arom. H); 5.94 ( $d d d d, J=5.5,6.6,10.3,17.2,1$ olef. H); $5.51(s, \mathrm{ArCH}) ; 5.33(q d, J=1.5,17.2,1$ olef. H); $5.24(q d, J=1.2,10.3,1$ olef. H$) ; 4.91(d, J=11.3, \mathrm{PhCH}) ; 4.83(d, J \approx 11.4,2 \mathrm{PhCH}) ; 4.79(d, J=3.7$, $\mathrm{H}-\mathrm{C}(1)) ; 4.68(d, J=12.1, \mathrm{PhC} H) ; 4.24\left(d d, J=4.8,10.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.19(t d d, J=1.4,5.2,12.9,1$ allyl. H$) ; 4.06$ $(t, J=9.3, \mathrm{H}-\mathrm{C}(3)) ; 4.03(t d d, J=1.2,6.7,12.9,1$ allyl. H$) ; 3.88(d t, J=4.7,9.9, \mathrm{H}-\mathrm{C}(5)) ; 3.82(s, \mathrm{MeO}) ; 3.68(t$, $\left.J=10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.59(t, J=9.4, \mathrm{H}-\mathrm{C}(4)) ; 3.56(d d, J=3.8,9.3, \mathrm{H}-\mathrm{C}(2))$.

Data of $\beta$-D-18 [41a]. $R_{\mathrm{f}}\left(\mathrm{AcOEt} /\right.$ hexane 1:6) $0.22 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.44-7.26(\mathrm{~m}, 12$ arom. H$)$; 6.92-6.88 ( $\mathrm{m}, 2$ arom. H); 5.97 (dddd, $J=5.3,5.9,10.5,17.2$, 1 olef. H); $5.53(s, \operatorname{ArCH}) ; 5.35$ ( $q d, J=1.6,17.2$, 1 olef. H) ; $5.22(q d, J=1.4,10.5,1$ olef. H $) ; 4.91(d, J=10.8, \mathrm{PhCH}) ; 4.90(d, J=11.4, \mathrm{PhCH}) ; 4.79(d, J=11.4$, $\mathrm{PhC} H) ; 4.77(d, J==10.8, \mathrm{PhCH}) ; 4.56(d, J=7.7, \mathrm{H}-\mathrm{C}(1)) ; 4.41(t d d, J=1.5,5.3,12.8,1$ allyl. H$) ; 4.33$ ( $d d$, $\left.J=5.0,10.4, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.16\left(t d d, J=1.4,6.0,12.8,1\right.$ allyl. H); $3.81(s, \mathrm{MeO}) ; 3.78\left(t, J=10.3, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.74$ $(t, J=8.8, \mathrm{H}-\mathrm{C}(3)) ; 3.67(t, J=9.0, \mathrm{H}-\mathrm{C}(4)) ; 3.49(t, J \approx 8.2, \mathrm{H}-\mathrm{C}(2)) ; 3.39(d d d, J=5.0,9.0,9.9, \mathrm{H}-\mathrm{C}(5))$.

2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-glucopyranose (19). $\mathrm{KO}(t-\mathrm{Bu})(7.46 \mathrm{~g}, 2.25$ equiv.) was added at r.t. to crude $18\left(15.66 \mathrm{~g}, 29.56 \mathrm{mmol} ; \alpha-\mathrm{D} / \beta-\mathrm{D} 4: 1\right.$ in DMSO $(250 \mathrm{ml})$ ). The mixture was warmed under $\mathrm{N}_{2}$ to $50^{\circ}$ for 1 h (red $\rightarrow$ dark brown), poured onto ice $/ \mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$, distributed between AcOEt and $\mathrm{H}_{2} \mathrm{O}$, and processed as usual to yield the yellow, crystalline isomerization product $(15.7 \mathrm{~g}, 98.3 \%)$.
$\mathrm{I}_{2}\left(21.64 \mathrm{~g}, 2\right.$ equiv.) was added in 1 portion at r.t. to a soln, of the above material in THF ( 540 ml ), $\mathrm{H}_{2} \mathrm{O}(135$ ml ), and pyridine ( $13.75 \mathrm{ml}, 4$ equiv.). After 10 min , the starting material had disappeared ( TLC, AcOEt/toluene 1:5). The mixture was treated at $0^{\circ}$ with $10 \%$ aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ soln. ( 100 ml ), stirred for 10 min , and extracted with AcOEt. The org. layer was washed with $1 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{3}$, sat. $\mathrm{NaHCO}_{3}$ soln., $\mathrm{H}_{2} \mathrm{O}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, treated with $\mathrm{Et}_{3} \mathrm{~N}$, concentrated to $c a .100 \mathrm{ml}$, and poured into stirred hexane ( 1000 ml ). The precipitate was filtered off, suspended twice in hexane, and filtered to yield light brown crystals ( 17.11 g ) and mother liquor ( 7.42 g ). FC ( 300 g , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1 \rightarrow 98: 2$ ) and recrystallization in toluene gave 19 ( 13.63 g ). FC of the mother liquors afforded further $19(2.13 \mathrm{~g})$. Total yield $15.76 \mathrm{~g}(77.3 \%)$. M.p. $165-166^{\circ}$ (AcOEt/hexane). $R_{\mathrm{f}}$ (toluene/AcOEt 4:1) 0.25 . $[\alpha]_{\mathrm{D}}^{25}=-36.1\left(c=0.98, \mathrm{CHCl}_{3} ;\right.$ after equilibration for 1 h$)$. $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3595 w, 3350 w(\mathrm{br}),. 3090 w, 3070 w, 3040 w$, $3000 \mathrm{w}, 2940 \mathrm{~m}, 2910 \mathrm{~m}, 2875 \mathrm{~m}, 2840 \mathrm{~m}, 1615 \mathrm{~m}, 1590 \mathrm{w}, 1515 \mathrm{w}, 1500 \mathrm{w}, 1465 \mathrm{w}$ (sh), $1455 \mathrm{~m}, 1370 \mathrm{~m}, 1305 \mathrm{~m}, 1170 \mathrm{~m}$, $1090 \mathrm{~s}, 1030 \mathrm{~s}, 995 \mathrm{~s}, 910 \mathrm{w}, 815 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \alpha-\mathrm{D} / \beta\right.$-D $\left.55: 45\right): 7.45-7.24(\mathrm{~m}, 2$ aгот. H); 6.93-6.88 $\left(m, 2\right.$ arom. H); $5.53(s, 0.45 \mathrm{H}), 5.52(s, 0.55 \mathrm{H}, \mathrm{ArCH}) ; 5.19\left(d d, J=2.2,3.7\right.$, addn. of $\mathrm{CD}_{3} \mathrm{OD} \rightarrow d, J=3.7,0.55$ $\mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.96-4.70\left(m\right.$, addn. of $\mathrm{CD}_{3} \mathrm{OD} \rightarrow$ change of signals, $4 \mathrm{PhCH}, 0.45 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)$ ); $4.33(d d, J=5.0,10.4$, $0.45 \mathrm{H}), 4.28\left(d d, J=4.9,10.2,0.55 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.07(d t, J=4.9,9.9,0.55 \mathrm{H}), 3.45(d t, J=5.0,10.0,0.45 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(5)) ; 4.00(t, J=9.2,0.55 \mathrm{H}), 3.69(t, J=9.0,0.45 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.82(\mathrm{~s}, \mathrm{MeO}) ; 3.775(t, J=9.3,0.45 \mathrm{H}), 3.77$ $(t, J=9.5,0.55 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 3.68(t, J=10.0,0.45 \mathrm{H}), 3.65\left(t, J=10.3,0.55 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.59(d d, J=3.8,8.9$, $0.55 \mathrm{H}), 3.41(d d, J=7.7,8.4,0.45 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 3.23\left(d, J=5.5\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.45 \mathrm{H}\right), 3.10(d, J=2.1$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.55 \mathrm{H}, \mathrm{OH}-\mathrm{C}(1)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO} ; \alpha-\mathrm{D} / \beta-\mathrm{D} 40: 60\right): \alpha-\mathrm{D}$-anomer: 159.44 $(s) ; 138.95(s) ; 138.56(s) ; 131.10(s) ; 128.48-126.95$ (several $d) ; 113.38(2 d) ; 100.30(d) ; 90.87(d) ; 81.42(d) ; 79.61$ $(d) ; 77.47(d) ; 73.60(t) ; 71.61(t) ; 68.27(t) ; 61.77(d) ; 55.06(q) ; \beta$-D-anomer: $159.44(s) ; 138.78(2 s) ; 130.06(s) ;$ 128.48-126.95 (several d); $113.38(2 d) ; 100.13(d) ; 97.24(d) ; 83.19(d) ; 80.91(d) ; 80.44(d) ; 73.98(t) ; 73.60(t)$; $67.92(t) ; 65.19(d) ; 55.06(q)$. CI-MS $\left(\mathrm{NH}_{3}\right): 480(30), 479\left(100,[M+1]^{+}\right), 371(9), 360(23)$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{7}(478.54)$ : C 70.28, H 6.32 ; found: C 70.25, H 6.51 .

2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-ghcose Oximes (20). $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(19.95 \mathrm{~g}, 287.1 \mathrm{mmol})$ was added under $\mathrm{N}_{2}$ to a soln. of $\mathrm{Na}(5.89 \mathrm{~g}, 256.2 \mathrm{mmol})$ in $\mathrm{MeOH}(311 \mathrm{ml})$. The mixture was stirred for 15 min at r.t. and 30 min at $0^{\circ}$ and filtered. The residue was washed with $\mathrm{MeOH}(186 \mathrm{ml})$. The combined filtrate and washings were added to $19(11.55 \mathrm{~g}, 14.14 \mathrm{mmol})$, and the mixture was stirred at $55-60^{\circ}$ for 3 h . After evaporation, the

Table 3. Selected ${ }^{13} \mathrm{C}$-NMR ( $50.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Chemical Shifts [ppm]
of 4, 5, 7, 8, 11-23, 25, 30, 35-38, 40, 43-49, 54-57, 60, and 61

|  | (E)-11 ${ }^{\text {a }}$ ) | $(Z)-11^{\text {a }}$ ) | 12 | $13^{\text {b }}$ ) | 15 | 4 | 16) | $17^{\text {c }}$ ) | $60^{\text {c }}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | 145.68 | 146.21 | 148.58 | 158.33 | 81.70 | 55.92 | 96.95 | 102.14 | 148.24 |  |  |
| C(2) | 68.89 | 65.19 | $67.40^{\text {d }}$ ) | $66.71{ }^{\text {d }}$ ) | $65.79{ }^{\text {d }}$ ) | $64.64{ }^{\text {d }}$ ) | $68.26{ }^{\text {d }}$ ) | $71.44^{\text {d }}$ ) | 66.93 |  |  |
| C(3) | 70.21 | 69.97 | $74.93{ }^{\text {e }}$ ) | $77.20^{\text {e }}$ ) | $74.56{ }^{\text {c }}$ ) | $74.03^{\text {e }}$ ) | $71.57^{\text {d }}$ ) | $72.54{ }^{\text {d }}$ ) | 71.96 |  |  |
| C(4) | 69.58 | 69.88 | $71.48^{\circ}$ ) | $70.27^{\text {e }}$ ) | $71.80{ }^{\text {e }}$ ) | $71.53^{\text {e }}$ ) | $68.13^{\text {d }}$ ) | $68.35{ }^{\text {d }}$ ) | 68.97 |  |  |
| C(5) | 68.36 | 68.85 | $67.27^{\text {d }}$ ) | $66.50{ }^{\text {d }}$ ) | $67.17^{\text {d }}$ ) | $64.78{ }^{\text {d }}$ ) | $70.06{ }^{\text {d }}$ ) | $72.77^{\text {d }}$ ) | 75.59 |  |  |
| C(6) | 64.39 | 64.65 | 61.06 | 60.30 | 60.93 | 60.44 | 62.02 | 61.99 | 61.30 |  |  |
| MeO | - | - | - | - | - | - | 55.13 | 56.25 | - |  |  |
|  | $\alpha-\mathrm{D}-18$ | $\beta$-D-18 | $\alpha-\mathrm{D}-19^{\text {f }}$ ) | $\beta-\mathrm{d}-19^{\text {f }}$ ) | (E)-20 ${ }^{\text {f }}$ ) | 21 | 22 | 23 | 25 ${ }^{\text {a }}$ ) | $5^{\text {a }}$ ) | 30 |
| C(1) | 96.71 | 103.0 | 90.87 | 97.24 | 147.23 | 150.73 | 151.14 | 156.77 | ${ }^{\text {g }}$ ) | ${ }^{\text {g }}$ ) | 144.36 |
| C(2) | $79.21{ }^{\text {d }}$ ) | 78.7 | $79.61{ }^{\text {d }}$ ) | $80.44{ }^{\text {d }}$ ) | $77.16^{\text {d }}$ ) | $80.27^{\text {d }}$ ) | 76.42 | 79.72 | 76.4 | 74.8 | 102.28 |
| C(3) | $78.53{ }^{\text {d }}$ ) | 81.4 ${ }^{\text {d }}$ ) | $77.61^{\text {d }}$ ) | 83.19 | $76.74{ }^{\text {d }}$ ) | 75.42 | 72.64 | 74.48 | 81.1 | 81.1 | 73.11 |
| C(4) | 82.09 | $80.8{ }^{\text {d }}$ ) | 81.42 | $80.91{ }^{\text {d }}$ ) | 80.65 | $81.28^{\text {d }}$ ) | 77.05 | 80.83 | 81.1 | 81.1 | 79.89 |
| C(5) | 62.49 | 66.0 | 61.77 | 65.19 | 60.05 | 63.53 | 71.51 | 66.64 | 68.3 | 67.9 | 68.63 |
| C(6) | $68.39^{\text {e }}$ ) | 68.6 | 68.27 | 67.92 | 70.23 | 68.56 | 68.05 | 68.03 | 68.3 | 67.9 | 68.31 |
| ArCH | 101.13 | 100.9 | 100.30 | 100.13 | 99.99 | 101.40 | 101.71 | 101.50 | 101.2 | 101.4 | 101.17 |
| MeO | 55.16 | 55.16 | 55.06 | 55.06 | 55.06 | 56.23 | 55.26 | 55.21 | 55.3 | 55.4 | 55.25 |
| AllO or | $68.87^{\text {e }}$ ), | , 70.6, | - | - | - | - | - | 36.06 | - | - | - |
| MsO | $\begin{aligned} & \text { 133.57, } \\ & 118.16 \end{aligned}$ | $\begin{aligned} & \text { 133.8, } \\ & 117.4 \end{aligned}$ |  |  |  |  |  |  |  |  |  |


|  | $(E)-35^{\text {a }}$ ) (Z) $\mathbf{3 5}{ }^{\text {a }}$ ) 36 |  |  | 37 | 38a/38b |  | $7^{\text {h }}$ ) | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | 149.93 | 150.43 | 151.12 | 155.39 | 82.53, 82 |  | 56.14 | 103.12 |
| C(2) | 75.33 | 70.14 | 72.60 | $71.86{ }^{\text {d }}$ ) | 78.09, 77 | .33 ${ }^{\text {d }}$ ) | $76.29{ }^{\text {d }}$ ) | $75.63{ }^{\text {d }}$ ) |
| C(3) | 77.18 | 77.75 | $76.27^{\text {d }}$ ) | $75.16^{\text {e }}$ ) | $78.62,78$ |  | $77.62^{\text {d }}$ ) | $77.57^{\text {d }}$ ) |
| C(4) | 80.53 | 80.75 | $77.00^{\text {d }}$ ) | $76.03^{\text {c }}$ ) | $78.19^{\text {d }}$ ) |  | $77.88^{\text {d }}$ ) | $78.41^{\text {d }}$ ) |
| C(5) | 61.73 | 62.25 | 71.42 | $71.31{ }^{\text {d }}$ ) | 69.83, 69 |  | 69.61 | 67.34 |
| C(6) | 70.93 | 70.93 | 68.03 | 67.34 | 68.33 |  | 67.94 | 68.37 |
| PhCH | 101.09 | 101.15 | 101.65 | 101.39 | 101.70 |  | 101.82 | 101.14 |
|  | (E)-43 | ( $Z$ )-43 | 44 | 45 | 46 | 47 ${ }^{\text {a }}$ ) | $\mathbf{8}^{\text {a }}$ ) |  |
| C(1) | 148.21 | 149.84 | 91.70 | 151.51 | 158.54 | 81.75 | 56.48 |  |
| C(2) | 49.97 | 46.38 | 51.72 | 49.24 | 49.24 | 49.24 | 48.87 |  |
| C(3) | $79.26{ }^{\text {d }}$ ) | $78.84{ }^{\text {d }}$ ) | 83.30 | 79.13 | $79.95{ }^{\text {d }}$ ) | 82.04 | 79.34 |  |
| C(4) | $79.84^{\text {d }}$ ) | $81.67^{\text {d }}$ ) | 78.34 | 78.62 | $78.26{ }^{\text {d }}$ ) | 77.74 | 77.00 |  |
| C(5) | 69.70 | 70.01 | 75.45 | 73.64 | 75.37 | 76.47 | 76.73 |  |
| C(6) | 71.78 | 71.66 | 69.24 | 68.25 | 68.71 | 67.96 | 67.56 |  |
| AcNH | $\begin{gathered} 169.15, \\ 22.87 \end{gathered}$ | $\begin{gathered} 169.51 \\ 22.73 \end{gathered}$ | $\begin{gathered} 170.24 \\ 23.10 \end{gathered}$ | $\begin{gathered} 170.49 \\ 22.95 \end{gathered}$ | $\begin{array}{r} 169.71 \\ 22.72 \end{array}$ | $\begin{array}{r} 170.85, \\ 23.23 \end{array}$ | $\begin{gathered} 169.58, \\ 22.80 \end{gathered}$ |  |
| $\cdots$ | 54 | 55 | 61 | $56^{\text {a }}$ ) | $57^{\text {a }}$ ) |  |  |  |
| C(1) | 98.30 | 101.11 | 149.07 | 149.2 | 163.7 |  |  |  |
| C(2) | 48.93 | 51.82 | 50.89 | 74.2 | 67.6 |  |  |  |
| C(3) | 73.82 | 75.85 | 74.64 | 81.8 | 80.4 |  |  |  |
| C(4) | 79.70 | 80.13 | 78.56 | 77.6 | 77.8 |  |  |  |
| C(5) | 57.62 | 63.72 | 67.73 | 75.6 | 75.4 |  |  |  |
| C(6) | 69.22 | 69.14 | 68.34 | 68.9 | 69.0 |  |  |  |
| Ph CH | 101.95 | 101.95 | 102.22 | - | - |  |  |  |
| MeO | 55.91 | 56.52 | - | - | - |  |  |  |
| AcNH | $\begin{array}{r} 169.22, \\ 22.97 \end{array}$ | $\begin{gathered} 169.31, \\ 23.17 \end{gathered}$ | $\begin{gathered} 169.56 \\ 23.07 \end{gathered}$ | - | - |  |  |  |

[^5]Hz ). ${ }^{\mathrm{c}}$ ) In $\left.\mathrm{C}_{6} \mathrm{D}_{6} .{ }^{\text {d }}\right)^{\mathrm{c}}$ ) Assignment may be reversed. ${ }^{\mathrm{f}}$ ) In ( $\mathrm{D}_{6}$ )DMSO. ${ }^{\mathrm{g}}$ ) Not determined. ${ }^{\mathrm{h}}$ ) In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ}$.
residue was distributed between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ and the org. phase processed as usual: crude $20(11.81 \mathrm{~g}, 99 \%$ ), showing two spots on TLC. This material was used for the next step. M.p. 143-144‥ $R_{\mathrm{f}}$ (toluene/AcOEt 4:1) 0.07, $0.13 .[\alpha]_{\mathrm{D}}^{25}=-16.5\left(c=1.14, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{~m}, 3340 \mathrm{~m}$ (br.), $3100 \mathrm{w}, 3070 \mathrm{w}, 3000 \mathrm{w}, 2910 \mathrm{w}, 2860 \mathrm{~m}$, $1615 m, 1590 w, 1515 w, 1500 w, 1455 m, 1385 m, 1355 m(s h), 1305 m, 1175 m, 1130 m(s h), 1085 s, 1035 s, 930 m, 880 w$, $830 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} ;(E) /(Z) 4: 1\right): 7.80-7.75$ (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.2 \mathrm{H}$ ), $7.59-7.55$ (br. $s$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.8 \mathrm{H}, \mathrm{NOH}\right) ; 7.49(d, J=7.8,0.8 \mathrm{H}), 6.93(d, J=7.1,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 7.39-7.29(m, 12$ arom. $\mathrm{H}) ; 6.88-6.84(m, 2$ arom. H$) ; 5.37(s, 0.2 \mathrm{H}), 5.33(s, 0.8 \mathrm{H}, \mathrm{ArCH}) ; 4.82(d, J=11.8,0.8 \mathrm{H}), 4.79(d, J=11.7,0.2$ $\mathrm{H}, \mathrm{PhCH}) ; 4.70(d, J=11.8,0.8 \mathrm{H}), 4.64(d, J=11.8,0.2 \mathrm{H}, \mathrm{PhC} H) ; 4.68(d, J=11.4, \mathrm{PhCH}) ; 4.55(d, J=11.6$, $0.2 \mathrm{H}), 4.51(d, J=11.5,0.8 \mathrm{H}, \mathrm{PhC} H) ; 4.45(d d, J=6.7,7.7, \mathrm{H}-\mathrm{C}(2)) ; 4.21(d d, J=5.2,10.6,0.2 \mathrm{H}), 4.20(d d$, $\left.J=5.2,10.7,0.8 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.98-3.85(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)) ; 3.79(s, \mathrm{MeO}) ; 3.72(d d, J=3.5,9.3,0.2 \mathrm{H}), 3.68$ $(d d, J=3.4,9.3,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)) ; 3.50(t, J=10.5,0.2 \mathrm{H}), 3.48\left(t, J=10.5,0.8 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 2.14(d, J=3.8$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.2 \mathrm{H}$ ), $2.00\left(d, J=4.1\right.$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.8 \mathrm{H}, \mathrm{OH}-\mathrm{C}(5) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left(\mathrm{D}_{6}\right) \mathrm{DMSO} ;(E)$-isomer): $159.31(s) ; 147.23(d) ; 138.63(s) ; 138.18$ ( $s$ ); 130.39 ( $s$ ); 128.19-127.25 (several d); $113.24(2 d) ; 99.99(d) ; 80.65(d) ; 77.16(d) ; 76.74(d) ; 74.02(t) ; 71.08(t) ; 70.23(t) ; 60.05(t) ; 55.06(d)$. CI-MS $\left(\mathrm{NH}_{3}\right): 512(12), 511\left(26,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 495(39), 494\left(100,[M+1]^{+}\right), 476(21), 358(20), 307(12)$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{7}$ (493.56): C 68.14, H 6.33, N 2.84; found: C 68.39, H 6.57, N 2.76.

Oxidation of 20, a) DBU ( $97 \% ; 3.835 \mathrm{ml}, 1.15$ equiv.) was added within 5 min to a soln. of crude $20(11.0 \mathrm{~g}$, $22.48 \mathrm{mmol})$ in cold $\left(-40^{\circ}\right) \mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{ml})$. The mixture was stirred for 5 min . Freshly recrystallized NCS ( 5 portions of $687 \mathrm{mg}, 1.15$ equiv.) was added within 15 min . The mixture was stirred for 30 min at $-40^{\circ}$, allowed to warm to r.t., diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and worked up as described above, to yield 21/229:1 (11.57 g) which crystallized during $\mathrm{FC}\left(250 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 2\right)$. The crystalline material ( $10.61 \mathrm{~g}, 96 \%$ ) was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to afford 21 ( $9.10 \mathrm{~g}, 92 \%$ ).
b) Similarly, oxidation of $20(2 \mathrm{~g})$ with $\mathrm{NCS}\left(595 \mathrm{mg}, 1.1\right.$ equiv.) and $\operatorname{DBU}\left(664 \mu \mathrm{l}, 1.1\right.$ equiv.) at $-40^{\circ}$ for 1 h yielded 2.084 g of crude material. FC ( 40 g, AcOEt/hexane $1: 1$ ) yielded 21 ( 738 mg , almost pure) and 22 ( 799 mg , containing $7 \%$ of 21 ( ${ }^{1} \mathrm{H}-\mathrm{NMR}$ )).
c) At $60^{\circ}, \mathbf{2 0}(200 \mathrm{mg})$ and $\mathrm{NaOAc}(55.4 \mathrm{mg}, 1.66$ equiv.) were dissolved in $\mathrm{EtOH}(9.5 \mathrm{ml})$ and treated with a soln. of $\mathrm{NaIO}_{4}\left(174 \mathrm{mg}, 2\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(3.3 \mathrm{ml})$. The same amounts of NaOAc and $\mathrm{NaIO}_{4}$ were added after 30 h . After 48 h , the temp. was raised to $80^{\circ}$ and the mixture stirred for further 24 h . Not all 20 had disappeared, but the mixture was filtered and worked up as above to yield $21 / 22$ ( 193.7 mg , yellow oil).

Data of (E)-2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-gluconhydroximo-1,5-lactone (21). M.p. 157$158^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) . R_{\mathrm{f}}$ (toluene/AcOEt 4:1) $0.33 .[\alpha]_{\mathrm{D}}^{25}=+2.4\left(c=1.11, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{w}, 3300 \mathrm{w}$, $3000 w, 2940 w, 2870 w, 2840 w, 1725 m, 1670 m, 1615 m, 1590 w, 1515 w, 1500 w, 1465 m$ (sh), $1455 m, 1370 m, 1305 m$, $1290 m, 1175 m, 1125 s(\mathrm{sh}), 1100 s(\mathrm{sh}), 1085 s, 1035 s(\mathrm{sh}), 1005 m, 970 m, 935 m, 890 w, 870 w, 815 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 7.43-7.26 ( $\mathrm{m}, 12$ arom. H ); $7.07\left(\mathrm{~s}\right.$; exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NOH}\right) ; 6.93-6.88(\mathrm{~m}, 2$ arom. H$) ; 5.52(s$, $\mathrm{ArCH}) ; 4.67(d, J=11.8, \mathrm{PhCH}) ; 4.60-4.51\left(m, \mathrm{H}-\mathrm{C}(5), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.56\left(s, \mathrm{PhCH}_{2}\right) ; 4.43(d, J=11.8, \mathrm{PhCH})$; $4.06(d, J=0.7, \mathrm{H}-\mathrm{C}(2)) ; 4.00(d d, J=0.7,6.6, \mathrm{H}-\mathrm{C}(3)) ; 3.865(d d, J=6.6,9.5, \mathrm{H}-\mathrm{C}(4)) ; 3.85(t, J=10.3$, $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)$ ) ; $3.82(\mathrm{~s}, \mathrm{MeO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6} 1: 1\right): 7.39-7.33(\mathrm{~m}, 2$ arom. H ); 7.25-7.11(m, 10 arom. H) ; 6.81-6.77 ( $m, 2$ arom. H); $6.51\left(s\right.$, exchange with $\mathrm{D}_{2} \mathrm{O}$, irrad. at $4.10 \rightarrow \mathrm{NOE}$ of $\left.1 \%, \mathrm{NOH}\right) ; 5.27(s$, irrad. at $3.62 \rightarrow \mathrm{NOE}$ of $11 \%, \mathrm{ArCH}) ; 4.58(d, J=11.9$, irrad. at $4.10 \rightarrow \mathrm{NOE}$ of $2 \%, \mathrm{PhCH}) ; 4.51(d t, J=5.3,10.1$, irrad. at $3.62 \rightarrow \mathrm{NOE}$ of $4 \%, \mathrm{H}-\mathrm{C}(5)$ ) ; 4.44 ( $s$, irrad. at $4.10 \rightarrow \mathrm{NOE}$ of $4.5 \%, \mathrm{PhCH}) ; 4.37(d d, J=5.4,10.5$, irrad. at $3.62 \rightarrow \mathrm{NOE}$ of $\left.26 \%, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.35(d, J=11.9$, irrad. at $4.10 \rightarrow \mathrm{NOE}$ of $4 \%, \mathrm{PhCH}) ; 4.10(d, J=0.7$, irrad. at $6.51 \rightarrow \mathrm{NOE}$ of $2 \%, \mathrm{H}-\mathrm{C}(2)) ; 3.99(d d, J=0.8,6.6$, irrad. at $4.10 \rightarrow \mathrm{NOE}$ of $5 \%, \mathrm{H}-\mathrm{C}(3)) ; 3.73(d d, J=6.6,10.1$, irrad. at $3.62 \rightarrow \mathrm{NOE}$ of $3.5 \%, \mathrm{H}-\mathrm{C}(4)) ; 3.62\left(t, J=10.3, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.48(s, \mathrm{MeO}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ : $160.12(s) ; 150.73(s) ; 137.23(s) ; 136.83(s) ; 129.27(s) ; 128.42-127.25$ (several $d) ; 113.56(2 d) ; 101.40(d) ; 81.28$ $(d) ; 80.27(d) ; 75.24(d) ; 71.78(t) ; 70.40(t) ; 68.56(t) ; 63.53(d) ; 56.23(q) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right) ; 493(33), 492(100$, $[M+1]^{+}$), 391 (29). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{7}$ (491.54); C 68.42, H 5.95, N 2.85 ; found: C 68.59, H 6.14, N 2.98.

Data of (Z)-2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-gluconhydroximo-1,5-lactone (22). Containing ca. $7 \%$ of ( $E$ )-isomer 21. $R_{\mathrm{F}}$ (toluene/AcOEt 4:1) 0.27 . IR $\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{~m}, 3300 \mathrm{w}, 3000 \mathrm{w}, 2940 \mathrm{~m}, 2915 \mathrm{~m}$, $2875 m, 2840 m, 1725 w, 1660 m, 1615 m, 1590 w, 1515 w, 1495 w, 1455 m, 1370 m, 1305 m(\mathrm{sh}), 1280 m(\mathrm{sh}), 1250 s, 1170 m$, $1095 s, 1080 s(\mathrm{sh}), 1060 s, 1000 \mathrm{~m}$ (sh), $965 \mathrm{~m}, 935 m, 830 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6} 1: 1\right.$ ): 7.41-7.34 ( $m, 2$ arom. H); 7.27-7.11 ( $m, 10$ arom. H); 6.82-6.78 ( $\mathrm{m}, 2$ arom. H); 6.66 ( $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NOH}$ ); 5.37 ( $s$, $\mathrm{ArCH}) ; 4.70(d, J=12.3$, irrad. at $4.16 \rightarrow \mathrm{NOE}$ of $2 \%, \mathrm{PhCH}) ; 4.54(d, J=12.3$, irrad. at $4.16 \rightarrow \mathrm{NOE}$ of $2 \%$, $\mathrm{PhCH}), 4.45(d, J \approx 12.6$, irrad. at $4.16 \rightarrow \mathrm{NOE}$ of $6 \%, 2 \mathrm{PhCH}) ; 4.41(t, J=9.7$, irrad. at $4.16 \rightarrow \mathrm{NOE}$ of $1 \%$, $\mathrm{H}-\mathrm{C}(4)) ; 4.25\left(d d, J=4.6,10.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.16(d, J=3.7, \mathrm{H}-\mathrm{C}(2)) ; 3.66\left(t, J=10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.58(d d$, $J=3.7,10.0$, irrad. at $4.16 \rightarrow \mathrm{NOE}$ of $10 \%, \mathrm{H} \sim \mathrm{C}(3)) ; 3.50(d d d, J=4.7,9.4,10.1, \mathrm{H}-\mathrm{C}(5)) ; 3.49(s, \mathrm{MeO})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 160.07(\mathrm{~s}) ; 151.14(\mathrm{~s}) ; 137.71(s) ; 137.09(s) ; 129.45(s) ; 128.61-126.94$ (several $d$ ); 113.59 (2d, $101.71(d) ; 77.05(d) ; 76.42(d) ; 72.64(d) ; 72.32(t) ; 71.51(d) ; 70.58(t) ; 68.05(t) ; 55.26(q)$.
(E)-[2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-glucopyranosylidene Jamino Methanesulfonate (23). A stirred soln. of $\mathrm{Et}_{3} \mathrm{~N}\left(228 \mu \mathrm{l}, 2.7\right.$ equiv.) and $21(3.00 \mathrm{~g}, 6.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{ml})$ at $0^{\circ}$ was treated with $\mathrm{MsCl}\left(710 \mu \mathrm{l}, 1.5\right.$ equiv.). After 30 min at $0^{\circ}$, the mixture was worked up as described above, yielding crude 23 $(3.589 \mathrm{~g}, 103 \%) . \mathrm{FC}(225 \mathrm{~g}$, AcOEt/hexane $1: 1)$ and drying of the product at $0^{\circ}$ yielded pure, spontaneously crystallizing $23\left(3.12 \mathrm{~g}, 90 \%\right.$ ). M.p. $140-141^{\circ}\left(\mathrm{dec}\right.$.). $R_{\mathrm{f}}$ (toluene $\left./ \mathrm{AcOEt} 9: 1\right) 0.41 .[\alpha]_{\mathrm{D}}^{25}=-20.2\left(c=1.04, \mathrm{CHCl}_{3}\right)$. IR ( $\mathrm{CHCl}_{3}$ ): $3020 w$ (br.), 2940w, 2875w, 2840w, 1650m, 1615m, 1590w, $1515 w, 1500 w, 1455 w, 1370 s, 1320 m$ (sh), $1300 \mathrm{~m}, 1250 \mathrm{~m}, 1175 \mathrm{~m}$ (sh), 1125 m (sh), $1100 \mathrm{~s}(\mathrm{sh}), 1085 \mathrm{~s}, 1035 \mathrm{~m}$ (sh), $1000 \mathrm{~m}, 970 \mathrm{~s}, 910 \mathrm{~m}, 885 \mathrm{w}, 865 \mathrm{~m}, 830 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6} 1: 1$ ): 7.36-7.31 ( $m, 2$ arom. H); 7.25-7.11 ( $m, 10$ arom. H); 6.82-6.77 ( $m, 2$ arom. H); $5.21(s, \mathrm{ArCH}) ; 4.56(d, J=12.0, \mathrm{PhCH}) ; 4.49(d t, J=5.4,10.2, \mathrm{H}-\mathrm{C}(5)) ; 4.41(d, J=12.1, \mathrm{PhCH})$; $4.36(d, J=11.8, \mathrm{PhC} H) ; 4.35(d, J=12.0, \mathrm{PhCH}) ; 4.23\left(d d, J=5.4,10.6, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.12(d, J=0.7, \mathrm{H}-\mathrm{C}(2))$; $3.98(d d, J=0.8,6.6, \mathrm{H}-\mathrm{C}(3)) ; 3.66(d d, J=6.6,10.2, \mathrm{H}-\mathrm{C}(4)) ; 3.48\left(t, J=10.4, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.47(s, \mathrm{MeO}) ; 2.72$ $(s, \mathrm{MsO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 160.19(s) ; 156.77(s) ; 136.86(s) ; 136.05(s) ; 131.90(s) ; 128.89-127.38$ (several $d$ ) ; $113.56(2 d) ; 101.50(d) ; 80.83(d) ; 79.72(d) ; 74.48(d) ; 71.92(t) ; 70.88(t) ; 68.03(t) ; 66.64(d) ; 55.21$ ( $q$ ) ; $36.06(q)$. ESI-MS ( Na ): $592\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{9} \mathrm{~S}(569.63): \mathrm{C} 61.15, \mathrm{H} 5.49, \mathrm{~N} 2.46$; found: C 61.23, H 5.34, N 2.42.
(Z)-[2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-glucopyranosylidene Jamino Methanesulfonate (24). Similarly as above, $22(300 \mathrm{mg}, 0.61 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ( $228 \mu \mathrm{l}, 2.7$ equiv.), and $\mathrm{MsCl}(71 \mu \mathrm{l}, 1.5$ equiv.) yielded 24 ( 303 $\mathrm{mg}, 87 \%$ ) as a colorless foam which turned yellow upon standing and decomposed slowly at r.t. $R_{\mathrm{f}}$ (toluene/AcOEt 9:1) 0.30. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{l}: 1\right.$ ): 7.40-7.32 ( $\mathrm{m}, 2$ arom. H); 7.28-7.05 ( $\mathrm{m}, 10$ arom. H ); 6.83-6.78 ( $m, 2$ arom. H); $5.27(s, \mathrm{ArCH}), 4.72(d, J=12.2, \mathrm{PhCH}) ; 4.56(d, J=12.4, \mathrm{PhCH}) ; 4.49(d, J=12.2, \mathrm{PhC} H)$; $4.46(d, J=12.4, \mathrm{PhCH}) ; 4.33(t, J=9.7, \mathrm{H}-\mathrm{C}(4)) ; 4.15(d, J=3.8, \mathrm{H}-\mathrm{C}(2)) ; 4.135\left(d d, J \approx 3.6,10.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right)$; $3.54(d d, J=3.9,9.8, \mathrm{H}-\mathrm{C}(3)) ; 3.53\left(t, J=10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.48(s, \mathrm{MeO}) ; 3.46(d t, J=3.8,10.0, \mathrm{H}-\mathrm{C}(5)) ; 2.71$ ( $s, \mathrm{MsO}$ ).

1,5-Anhydro-2,3-di-O-benzyl-1-hydrazi-4,6-O-(4-methoxybenzylidene)-D-glucitol (25). A soln. of $\mathrm{NH}_{3}$ in $\mathrm{MeOH}(64 \mathrm{ml})$ saturated at $0^{\circ}$ was added at $-20^{\circ}$ to a slurry of $23(615 \mathrm{mg}, 1.08 \mathrm{mmol})$ in MeOH ( 13 ml ). The suspension was stirred for 30 min at $0^{\circ}$ and treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{ml})$. The resulting colorless soln. was kept for 113 h at $0^{\circ}$, concentrated at r.t. to 25 ml , and kept at $0^{\circ}$ for 3 h . The crystals were filtered off, washed with cold MeOH , and dried over night at $0^{\circ} / 10^{-6}$ mbar to yield 25 ( 349 mg ). A second crop ( 67 mg , total yield $78.5 \%$ ) was obtained by concentrating the mother liquor. M.p. $130-132^{\circ}(\mathrm{MeOH}) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right) 0.24$. $[\alpha]_{\mathrm{D}}^{25}=-20.4\left(c=1.04, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{3}\right): 3275 w, 3000 w, 2940 w, 2910 m, 2870 m, 2870 m, 2845 w, 1615 m, 1590 w$, $1515 w, 1500 w, 1465 w(\mathrm{sh}), 1455 w, 1395 w(\mathrm{sh}), 1370 \mathrm{~m}, 1330 \mathrm{~m}, 1305 \mathrm{~m}, 1270 \mathrm{~m}, 1250 \mathrm{~s}, 1170 \mathrm{~m}, 1130 \mathrm{~s}, 1090 \mathrm{~s}, 1030 \mathrm{~s}$, $995 m, 970 m, 930 w(\mathrm{sh}), 915 w, 865 w, 830 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.43(d, J=8.6,2$ arom. H$) ; 7.40-7.30$ $(m, 10$ arom. H) $6.92(d, J=8.7,2$ arom. H$) ; 5.57(s, \mathrm{ArCH}) ; 4.94(d, J=11.2, \mathrm{PhCH}) ; 4.84(d, J=10.6, \mathrm{PhCH})$; $4.80(d, J=11.3, \mathrm{PhC} H) ; 4.75(d, J=10.6, \mathrm{PhCH}) ; 4.33\left(d d, J=4.0,10.6, \mathrm{H}_{\mathrm{cq}}-\mathrm{C}(6)\right) ; 4 . \mathrm{II}(d, J=8.1, \mathrm{H}-\mathrm{C}(2))$; $3.88-3.80(m, 3 \mathrm{H}) ; 3.83(s, \mathrm{MeO}) ; 3.73\left(t, J=10.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 2.84\left(d, J=9.4\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 2.34(d$, $J=9.4$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; from ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$-COSY): 128.3 (several $d$ ); 127.4 $(2 d) ; 113.6(2 d) ; 101.2(d, \mathrm{ArCH}) ; 81.1(2 d, \mathrm{C}(3), \mathrm{C}(4)) ; 76.4\left(d\right.$ and $\left.t, \mathrm{C}(2), \mathrm{PhCH}_{2}\right) ; 75.3\left(t, \mathrm{PhCH}_{2}\right) ; 68.3$ ( $d$ and $t, \mathrm{C}(5), \mathrm{C}(6)) ; 55.3(q, \mathrm{MeO}) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 492(31), 491\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}(490.56):$ C 68.56, H 6.16, N 5.71; found: C 68.48, H 6.37, N 5.64.

1,5-Anhydro-1-azi-2,3-di-O-benzyl-4,6-O-(4-methoxybenzylidene)-D-glucitol (5). A soln. of $\mathrm{NH}_{3}$ in MeOH $(52 \mathrm{ml})$ saturated at $0^{\circ}$ was added at $-20^{\circ}$ to a slurry of $25(501 \mathrm{mg}, 0.88 \mathrm{mmol})$ in $\mathrm{MeOH}(11 \mathrm{ml})$. The suspension was stirred for $30 \mathrm{~min} 0^{\circ}$ and treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The resulting colorless soln. was kept for 65 h at $0^{\circ}$. The crystals obtained by evaporation of the solvents at $25^{\circ}$ in vacuo were taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ}$ and washed at this temp. with $\mathrm{H}_{2} \mathrm{O}$. The dried $\left(\mathrm{MgSO}_{4}\right)$ org. phases were concentrated at $25^{\circ}$ in vacuo to 10 ml . This soln. was diluted at $0^{\circ}$ with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and $\mathrm{MeOH}(42 \mathrm{ml})$, treated with $\mathrm{Et}_{3} \mathrm{~N}\left(486 \mu 1,4\right.$ equiv.), stirred for 5 min at $0^{\circ}$, treated dropwise within 30 min with a soln. of $\mathrm{I}_{2}\left(246 \mathrm{mg}, 1.1\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 16 ml ), and concentrated in vacuo to 20 ml , whereupon 5 crystallized. Storage at $-20^{\circ}$ for 2 h , filtration, washing of the crystals with cold MeOH (until colorless filtrate), and drying for 45 min over $\mathrm{P}_{2} \mathrm{O}_{5}$ at r.t. yielded 5 ( $305 \mathrm{mg}, 71 \%$ ). A further crop of 5 ( 33 mg , $7.7 \%$ ) was obtained from the mother liquors. M.p. $77^{\circ}$ (dec. with evolution of $\mathrm{N}_{2}$ ). $R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.53$. [ $\left.\alpha\right]_{\mathrm{D}}^{25}=+66.8$ $\left(c=1.07, \mathrm{CHCl}_{3}\right)$. UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 344(95) . \mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 275 \mathrm{~K}\right): 359(+2.7 \mathrm{mdeg}), 347(+2.5 \mathrm{mdeg}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right):$ $3095 w, 3070 w, 3000 w, 2940 w, 2910 w, 2870 m, 2845 w, 1615 m, 1590 w, 1565 w, 1515 w, 1500 w, 1455 w, 1370 m, 1305 m$, $1270 w, 1170 s, 1145 m(s h), 1120 s(s h), 1100 s, 1085 s, 1065 s(\mathrm{sh}), 1035 s, 1000 \mathrm{~m}, 975 m$ (sh), $940 \mathrm{w}, 910 \mathrm{w}, 830 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.43(d, J=8.0,2$ arom. H$) ; 7.34-7.18(\mathrm{~m}, 10$ arom. H$) ; 6.93(d, J=8.0,2$ arom. H$)$; $5.56(s, \mathrm{ArC} H) ; 4.93(d, J=11.1, \mathrm{PhC} H) ; 4.81(d, J=11.1, \mathrm{PhC} H) ; 4.30(d, J=11.2, \mathrm{PhC} H) ; 4.21-4.18$
$\left(m, \mathrm{PhCH}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.13(d, J=8.5, \mathrm{H}-\mathrm{C}(2)) ; 4.07(t, J=8.4, \mathrm{H}-\mathrm{C}(3)) ; 3.85-3.82(m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 3.83$ ( $s, \mathrm{MeO}$ ); $3.65\left(t, J=9.9, H_{\mathrm{ax}}-\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; from $\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{COSY}\right): 128.3$ (several d); 127.4 (2d); $113.6(2 d) ; 101.4(d, \mathrm{ArCH}) ; 81.1(2 d, \mathrm{C}(3), \mathrm{C}(4)) ; 75.2\left(t, \mathrm{PhCH}_{2}\right) ; 74.8(d, \mathrm{C}(2)) ; 73.4(t, \mathrm{PhCH} 2) ; 67.9$ (d, and $t, \mathrm{C}(5), \mathrm{C}(6)$ ); $55.4(q, \mathrm{MeO})$. CI-MS $\left(\mathrm{NH}_{3}\right): 493(14), 478\left(13,\left[M-\mathrm{N}_{2}+\mathrm{NH}_{4}\right]^{+}\right), 462(29), 461$ (100, $\left[M-\mathrm{N}_{2}+1\right]^{+}$). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ (488.54): C 68.84, H 5.78, N 5.73 ; found: C 68.71, H $6.00, \mathrm{~N} 5.80$.

Methyl 2,3-Di-O-benzyl-4,6-O-(4-methoxybenzylidene)- $\alpha$-D- and- $\beta$-D-glucoypyranoside ( $\mathbf{2 6}[41 \mathrm{~b}, \mathrm{c}]$ and 27 ). A suspension of $5(21.0 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was shaken for 2 min at r.t. and filtered. The filtrate was used for the determination of the activation energy (see below). The solns. were then pooled, kept for 26 h at r.t., and evaporated to give a spontaneously crystallizing mixture 26/27 (45:55). M.p. $126-127^{\circ}$ ([41b]: 143-144 ${ }^{\circ}$ for 26). $R_{\mathrm{f}}$ (hexane/AcOEt 2:1) $0.60,0.53$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.43-7.26(\mathrm{~m}, 12$ arom. H$) ; 6.91(d, J=8.7,2$ arom. $\mathrm{H}) ; 5.53(s, 0.55 \mathrm{H}), 5.51(s, 0.45 \mathrm{H}, \mathrm{ArCH}) ; 4.92-4.68(\mathrm{~m}, 4 \mathrm{PhCH}) ; 4.59(d, J=3.7,0.45 \mathrm{H}), 4.42(d, J=7.6,0.55$ $\mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.35(d d, J=5.0,10.4,0.55 \mathrm{H}), 4.25\left(d d, J=4.6,9.9,0.45 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.04(t, J=9.3,0.45 \mathrm{H}), 3.67$ $(t, J=9.1,0.55 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.87-3.78(\mathrm{~m}, 0.45 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 0.55 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)) ; 3.82\left(\mathrm{~s}, \mathrm{MeOC}_{6} \mathrm{H}_{4}\right) ; 3.78(t$, $J=10.1,0.55 \mathrm{H}), 3.69\left(t, J=10.2,0.45 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.74(t, J=9.5,0.55 \mathrm{H}), 3.585(t, J=9.3,0.45 \mathrm{H}, \mathrm{H}-\mathrm{C}(4))$; $3.59(s, 1.65 \mathrm{H}), 3.40(s, 1.35 \mathrm{H}, \mathrm{MeO}-\mathrm{C}(1)) ; 3.55(d d, J=3.7,9.4,0.45 \mathrm{H}), 3.44(t, J \approx 8.3,0.55 \mathrm{H}, \mathrm{H}-\mathrm{C}(2))$.

Condensation of 5 with Benzaldehyde. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was cooled to $0^{\circ}$, treated with $5(54.5 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $4-\AA$ molecular sieves ( 103 mg ), and stirred for 30 min at $0^{\circ}$. After addition of $\mathrm{Bu}_{3} \mathrm{P}(41 \mu \mathrm{l}, 0.17 \mathrm{mmol})$ and benzaldehyde ( $13.5 \mu \mathrm{l}, 0.12 \mathrm{mmol}$ ), the mixture was cooled to $-70^{\circ}$, irradiated (quartz filter) for 3 h , then warmed up to r.t., and filtered. After evaporation, drying of the residue at r.t. in vacuo and $\mathrm{FC}\left(9 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.2: 1\right)$ gave 29 ( $3.8 \mathrm{mg}, 6 \%$ ), $28(4.9 \mathrm{mg}, 8 \%)$, and $30(3.1 \mathrm{mg}, 8 \%)$.

Data of (E)-2,6-Anhydro-3,4-di-O-benzyl-1-deoxy-5,7-O-(4-methoxybenzylidene)-1-phenyl-D-gluco-hept-1enitol (28). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl} /\right.$ hexane $\left.3: 1\right) 0.20 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.45-7.41(m, 2$ arom. H$) ; 7.35-7.16(m$, 13 arom. H); 7.03-6.99 ( $\mathrm{m}, 2$ arom. H); 6.93-6.89 ( $\mathrm{m}, 2$ arom. H); $6.43(\mathrm{~s}, \mathrm{H}-\mathrm{C}(1)$ ); $5.53(\mathrm{~s}, \mathrm{ArCH}) ; 4.62(\mathrm{~s}$, $\mathrm{H}-\mathrm{C}(3)) ; 4.57(d, J=11.8, \mathrm{PhC} H) ; 4.52(d, J=10.7, \mathrm{PhC} H) ; 4.48(d, J=10.7, \mathrm{PhC} H) ; 4.50-4.41(m, \mathrm{H}-\mathrm{C}(6)$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(7)\right) ; 4.08(d, J=11.8, \mathrm{PhCH}) ; 3.96(d, J=6.6, \mathrm{H}-\mathrm{C}(4)) ; 3.92(d d, J=6.7,9.1, \mathrm{H}-\mathrm{C}(5)) ; 3.82(s, \mathrm{MeO})$; $3.76\left(t, J=11.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(7)\right)$.

Data of (Z)-2,6-Anhydro-3,4-di-O-benzyl-1-deoxy-5,7-O-(4-methoxybenzylidene)-1-phenyl-D-gluco-hept-1enitol (29). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 3:1) 0.30. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.61-7.57(\mathrm{~m}, 2$ arom. H$) ; 7.45-7.18$ ( m , 15 arom. H); 6.93-6.88 ( $\mathrm{m}, 2$ arom. H); $5.60(\mathrm{~s}, \mathrm{H}-\mathrm{C}(1)) ; 5.53(\mathrm{~s}, \mathrm{ArCH}) ; 4.735(d, J=12.0, \mathrm{PhCH}) ; 4.73(d$, $J=11.8, \mathrm{PhC} H) ; 4.66(d, J=12.0, \mathrm{PhC} H) ; 4.56\left(d d, J=5.2,10.3, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(7)\right) ; 4.52(d, J=11.8, \mathrm{PhC} H) ; 4.37(d t$, $J=5.2,10.0, \mathrm{H}-\mathrm{C}(6)) ; 4.02(d, J=2.2, \mathrm{H}-\mathrm{C}(3)) ; 3.98(d d, J=2.3,7.1, \mathrm{H}-\mathrm{C}(4)) ; 3.88(d d, J=7.1,9.9, \mathrm{H}-\mathrm{C}(5))$; $3.86\left(t, J=10.3, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(7)\right) ; 3.82(s, \mathrm{MeO})$.

Data of 1,5-Anhydro-3-O-benzyl-2-deoxy-4,6-O-(4-methoxybenzylidene)-D-arabino-hex-1-enitol (30). $R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 3:1) 0.16. IR $\left(\mathrm{CHCl}_{3}\right): 3010 w, 2940 w, 2900 \mathrm{~m}, 2880 \mathrm{~m}, 2845 w, 1645 m, 1615 m, 1590 w, 1515 w, 1465 w$ (sh), $1455 \mathrm{~m}, 1375 \mathrm{~m}, 1305 \mathrm{~m}, 1285 \mathrm{w}, 1170 \mathrm{~m}, 1130 \mathrm{~s}, 1100 \mathrm{~s}, 1070 \mathrm{~s}, 1035 \mathrm{~s}, 1010 \mathrm{~m}, 980 \mathrm{~m}, 910 \mathrm{w}, 880 \mathrm{w}, 830 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6}$ 1:1): 7.43-7.39 ( $m, 2$ arom. H ); 7.33-7.30 ( $\mathrm{m}, 2$ arom. H ); 7.24-7.12 ( $m, 2$ arom. H ); 6.83-6.79 ( $\mathrm{m}, 2$ arom. H ); $6.18(d d, J=1.5,6.0, \mathrm{H}-\mathrm{C}(1)$ ); $5.38(\mathrm{~s}, \mathrm{ArCH}) ; 4.73(d, J \approx 12.0, \mathrm{PhCH}) ; 4.71(d d$, $J=2.0,6.1, \mathrm{H}-\mathrm{C}(2)) ; 4.61(d, J=11.0, \mathrm{PhC} H) ; 4.26(t d, J=1.8,7.4, \mathrm{H}-\mathrm{C}(3)) ; 4.21(d d, J=5.0,10.3$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.93(d d, J=7.4,10.1, \mathrm{H}-\mathrm{C}(4)) ; 3.77(d t, J=4.9,10.1, \mathrm{H}-\mathrm{C}(5)) ; 3.62\left(t, J=10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.49(s$, $\mathrm{MeO})$. CI-MS $\left(\mathrm{NH}_{3}\right): 356(23), 355\left(100,[M+1]^{+}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \alpha$-D-anomer: $160.04(s) ; 144.36$ $(d) ; 138.47(s) ; 129.79(s) ; 128.41-127.34$ (several $d) ; 113.57(2 d) ; 102.28(d) ; 101.17(d) ; 79.89(d) ; 73.11(d) ; 71.92$ ( $t$ ); 68.63 (d); $68.31(t) ; 55.25(q)$.

Allyl $\alpha-\mathrm{D}$-Mannopyranoside $(\mathbf{3 1}) . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(8.0 \mathrm{ml}, 64 \mathrm{mmol})$ was added to a suspension of D -mannose $(100 \mathrm{~g}$, 556 mmol ) in prop-2-enol. The mixture was kept at reflux for 4 h , and $\mathrm{H}_{2} \mathrm{O}$ was removed by $4-\AA$ molecular sieves, placed in a Soxhlet apparatus. After removal of the prop-2-enol, the crude was dissolved in $\mathrm{H}_{2} \mathrm{O}$, stirred for 12 h with charcoal ( 3 g ), filtered through Celite, and lyophilized to give crude $31(122 \mathrm{~g})$.

Allyl 4,6-O-Benzylidene- $\alpha$-D-mannopyranoside (32). Benzaldehyde dimethyl acetal ( $83 \mathrm{ml}, 554 \mathrm{mmol}$ ) was added to a suspension of crude $31(122 \mathrm{~g}, 554 \mathrm{mmol})$ in 1,4 -dioxane ( 964 ml ). The mixture was stirred at $c a .40 \mathrm{mbar}$ for 45 min . After addition of $\mathrm{NaHCO}_{3}(9.4 \mathrm{~g})$, the solvent was evaporated, the residue treated with ice-water ( 470 $\mathrm{ml})$ and extracted with $\mathrm{AcOEt}(3 \times 400 \mathrm{ml})$, and the org. phase washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Crystallization from AcOEt/hexane gave 32 ( $101 \mathrm{~g}, 59 \%$ from mannose). M.p. $119-122^{\circ}$ ( 56 ]: 148-149 ).
( E )- and ( Z )-2,3-Di-O-benzyl-4,6-O-benzylidene-D-mannose Oxime ( $\mathbf{3 5}$ ). A mixture of $32(1 \mathrm{~g}, 3.24 \mathrm{mmol}$ ), DMF ( 10 ml ), and $4-\AA$ molecular sieves was treated with $\mathrm{NaH}(234 \mathrm{mg}, 9.75 \mathrm{mmol})$ at $0^{\circ}$ and stirred for 30 min . $\mathrm{BnBr}(1.07 \mathrm{ml}, 9.00 \mathrm{mmol})$ was slowly added at $0^{\circ}$. The mixture was stirred for 4 h , treated dropwise with MeOH $(0.1 \mathrm{ml})$, poured onto ice-water $(5 \mathrm{ml})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$. The org. phase was washed with brine ( $2 \times 5 \mathrm{ml}$ ), dried $\left(\mathrm{MgSo}_{4}\right)$, and evaporated: crude $33(1.62 \mathrm{~g})$.

A soln. of crude $33(1.62 \mathrm{~g}, \mathrm{ca} .3 .2 \mathrm{mmol})$ and $\mathrm{KO}(t-\mathrm{Bu})(1 \mathrm{~g}, 8.9 \mathrm{mmol})$ in DMSO $(20 \mathrm{ml})$ was heated to $55^{\circ}$ for 20 min , poured onto ice-water ( 40 ml ), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{mi})$. The org. phase was washed with brine ( $2 \times 40 \mathrm{ml}$ ). Normal workup and drying of the residue under high vacuum yielded 1.55 g of crude material, which was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 4: 1(35 \mathrm{ml})$ and treated with $\mathrm{I}_{2}(1.65 \mathrm{~g}, 6.5 \mathrm{mmol})$ under vigorous stirring. Pyridine ( 1.05 $\mathrm{ml}, 13 \mathrm{mmol})$ was added immediately after $\mathrm{I}_{2}$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{ml})$ and extracted with $\mathrm{CHCl}_{3}$ $(2 \times 90 \mathrm{ml})$. The org. phase was washed successively with freshly prepared $5 \% \mathrm{aq}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ soln. ( $2 \times 90 \mathrm{ml}$ ), sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. $(90 \mathrm{ml})$, and brine ( $2 \times 90 \mathrm{ml}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated: 1.48 g of crude $34(1.48 \mathrm{~g}$, $\alpha-\mathrm{D} / \beta-\mathrm{D} \approx 3: 1$ ) [53].

A soln. of crude $34(1.48 \mathrm{~g}, c a .3 .2 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{ml})$ was added to a suspension of $\mathrm{Na}(291 \mathrm{mg}, 12.7$ $\mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.75 \mathrm{~g}, 25.2 \mathrm{mmol})$ in boiling $\mathrm{EtOH}(40 \mathrm{ml})$. The solvent was evaporated after 2 h . The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{ml})$. Normal workup and crystallization $\mathrm{from}_{\mathrm{Et}}^{2} \mathrm{O} /$ hexane at $35^{\circ}$ yielded $\mathbf{3 5}$ ( $786 \mathrm{mg}, 52 \%$ from 32). FC (AcOEt/hexane 1:1) of the mother liquor gave additional pure 35 ( 333 $\mathrm{mg}, 22 \%$ ). M.p. $137^{\circ} . R_{\mathrm{f}}\left(\mathrm{AcOEt} /\right.$ hexane 1:1) $0.32 .[\alpha]_{\mathrm{D}}^{20}=-49.5\left(c=1.09, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 w, 3347 w$, $3067{ }^{2}, 2932 w, 2863 w, 1496 w, 1455 m, 1398 m, 1357 w, 1310 w, 1092 s, 1028 s, 983 m, 918 m$. ${ }^{l} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3},(E) /(Z) \approx 4: 1\right):(E)$-isomer: 8.23 (br. $\left.s, \mathrm{NOH}\right) ; 7.58(d, J=7.8, \mathrm{H}-\mathrm{C}(1)) ; 7.45-7.24$ ( $m, 15$ arom. H ); 5.36 $(s, \mathrm{PhC} H) ; 4.81(d, J=11.6, \mathrm{PhC} H) ; 4.69(d, J=11.8, \mathrm{PhCH}) ; 4.65(d, J=11.6, \mathrm{PhCH}) ; 4.46(d d, J=6.2,7.8$, $\mathrm{H}-\mathrm{C}(2)) ; 4.44(d, J=11.7, \mathrm{PhC} H) ; 4.25\left(d d, J=5.2,10.6, \mathrm{H}_{\mathrm{cq}}-\mathrm{C}(6)\right) ; 4.08(d d, J=2.9,6.2, \mathrm{H}-\mathrm{C}(3)) ; 3.94-3.91$ $(m, \mathrm{H}-\mathrm{C}(5)) ; 3.84(d d, J=2.9,9.5, \mathrm{H}-\mathrm{C}(4)) ; 3.52\left(t, J \approx 10.4, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 2.06$ (br. $\left.s, \mathrm{OH}\right) ;(Z)$-isomer: 8.60 (br. $s, \mathrm{NOH}) ; 7.45-7.24(m, 15 \operatorname{arom} . \mathrm{H}) ; 7.05(d, J=7.1, \mathrm{H}-\mathrm{C}(1)) ; 5.39(\mathrm{~s}, \mathrm{PhCH}) ; 5.27(d d, J=4.8,7.1, \mathrm{H}-\mathrm{C}(2))$; $4.82-4.46(m, 4 \mathrm{PhCH}) ; 4.27\left(d d, J=5.3,10.6, \mathrm{H}_{\mathrm{cq}}-\mathrm{C}(6)\right) ; 4.13(d d, J=3.8,4.6, \mathrm{H}-\mathrm{C}(3)) ; 4.06-4.03(m, \mathrm{H}-\mathrm{C}(5))$; 3.85-3.82 ( $m, \mathrm{H}-\mathrm{C}(4)$ ); $3.53\left(t, J \approx 10.4, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 2.46(\mathrm{br} . s, \mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):(E)$-isomer: 149.93 (d); $137.50(s) ; 137.39(2 s) ; 128.79-126.12$ (several d); $101.09(d) ; 80.53(d) ; 77.18(d) ; 75.33(d) ; 73.64(t) ;$ $71.13(t) ; 70.93(t) ; 61.73(d) ;(Z)$-isomer: $150.43(d) ; 137.53(s) ; 137.50-137.39(2 s) ; 128.79-126.12($ several $d)$; $101.15(d) ; 80.75(d) ; 77.75(d) ; 73.42(t) ; 72.20(t) ; 70.93(t) ; 70.14(d) ; 62.25(d) . \mathrm{CI}-\mathrm{MS}: 481\left(85,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 464$ $\left(100,[M+1]^{+}\right), 446(16), 358$ (26). Anal. calc, for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6}(463.53)$ : C $69.96, \mathrm{H} 6.31$; found: C 70.02, H 6.53.

2,3-Di-O-benzyl-4,6-O-benzylidene-D-mannonhydroximo-1,5-lactone (36). A soln. of 35 ( $2.00 \mathrm{~g}, 4.31 \mathrm{mmol}$ ) and $\operatorname{DBU}(0.7 \mathrm{ml}, 4.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $-20^{\circ}$ was treated with $\mathrm{NCS}(633 \mathrm{mg}, 4.74 \mathrm{mmol})$. The mixture was stirred for 10 min at $-20^{\circ}$, allowed to warm up to $0^{\circ}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$, and washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 80 \mathrm{ml})$. The org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated: $36(2.03 \mathrm{~g})$ as a yellow foam. A sample was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ /hexane. M.p. $118^{\circ} . R_{\mathrm{f}}($ toluene $/ \mathrm{MeOH} 9: 1) 0.30 .[\alpha]_{\mathrm{D}}^{20}=0\left(c=1.02, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$ : $3576 m, 3312 w, 3090 w, 3067 w, 2912 w, 2872 m, 1662 m, 1630 w, 1497 m, 1454 m, 1372 m, 1332 w, 1313 w, 1281 m, 1255 m$, $1173 m, 1094 s, 1059 \mathrm{~s}, 1028 s, 967 m, 937 m, 915 m, 890 w, 870 w, 644 w, 599 w, 512 w,{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ : $7.52-7.06$ ( $\mathrm{m}, 15$ arom. H); 6.68 (br. $s, \mathrm{NOH}$, exchange with $\mathrm{D}_{2} \mathrm{O}$ ); $5.14(s, \mathrm{PhCH}) ; 4.74(d, J=12.0, \mathrm{PhCH}) ; 4.50$ $(d, J \approx 11.4,2 \mathrm{PhC} H) ; 4.45(t, J \approx 9.7, \mathrm{H}-\mathrm{C}(4)) ; 4.40(d, J=12.2, \mathrm{PhCH}) ; 4.27(d, J=3.7, \mathrm{H}-\mathrm{C}(2)) ; 4.04(d d$, $\left.J=4.5,10.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.48(d d, J=3.6,10.0, \mathrm{H}-\mathrm{C}(3)) ; 3.41\left(t, J \approx 10.1, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.32(d t, J \approx 4.5,9.5$, $\mathrm{H}-\mathrm{C}(5)$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 151.12(s) ; 137.61(s) ; 136.99(s) ; 136.87(s) ; 128.99-125.98$ (several $d$ ); $101.65(d) ; 77.00(d) ; 76.27(d) ; 72.60(d) ; 72.28(t) ; 71.42(d) ; 70.57(t) ; 68.03(t)$. CI-MS: $462\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{6}$ (461.51): C 70.27, H 5.90; found: C 70.49, H 6.18.
(2,3-Di-O-benzyl-4,6-O-benzylidene-D-mannopyranosylidene) amino 2,4,6-Trimethylbenzene-I-sulfonate (37). A soln. of crude $36(2.03 \mathrm{~g}$, ca. 4.3 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $0^{\circ}$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{ml}, 8.66 \mathrm{mmol})$ and $2,4,6$-trimethylbenzene-1-sulfonyl chloride ( $1.2 \mathrm{~g}, 5.49 \mathrm{mmol}$ ). The mixture was stirred for 30 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$, and washed with sat. aq. $\mathrm{NaHCO}_{3}$ soln. ( 40 ml ) and brine ( 40 ml ). The org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue crystallized from AcOEt/hexane: $37\left(2.49 \mathrm{~g}, 90 \%\right.$ from 35 ). M.p. $152^{\circ} . R_{\mathrm{f}}$ ( $\mathrm{AcOEt} / \mathrm{hexane} 1: 2) 0.42 .[\alpha]_{\mathrm{D}}^{20}=+17.6\left(c=1.03, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3067 \mathrm{w}, 2941 \mathrm{~m}, 2874 m, 1647 \mathrm{~m}, 1604 m$, $1568 \mathrm{w}, 1496 \mathrm{~m}, 1469 \mathrm{~m}, 1455 \mathrm{~m}, 1369 \mathrm{~s}, 1314 \mathrm{~m}, 1296 \mathrm{~m}, 1148 \mathrm{~m}, 1094 \mathrm{~s}, 1058 \mathrm{~s}, 1027 \mathrm{~m}, 966 \mathrm{~m}, 913 \mathrm{~m}, 855 \mathrm{~m}, 581 \mathrm{~s}, 539 \mathrm{~m}$, $530 \mathrm{~m}, 514 w, 504 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.45-7.05(\mathrm{~m}, 15$ arom. H); $6.58(\mathrm{~s}, 2$ arom. H); $5.03(s, \mathrm{PhCH})$; $4.35(d, J \approx 12.1,2 \mathrm{PhCH}) ; 4.27(t, J \approx 9.7, \mathrm{H}-\mathrm{C}(4)) ; 4.25(d, J \approx 12.3, \mathrm{PhC} H) ; 4.08(d, J=12.1, \mathrm{PhCH}) ; 3.99(d$, $J=3.7, \mathrm{H}-\mathrm{C}(2)) ; 3.93\left(d d, J=4.6,10.1, H_{\mathrm{cq}}-\mathrm{C}(6)\right) ; 3.25\left(t, J \approx 10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.23(d d, J=3.8,10.0$, $\mathrm{H}-\mathrm{C}(3)) ; 3.15(d t, J \approx 4.5,9.8, \mathrm{H}-\mathrm{C}(5)) ; 2.84(s, 2 \mathrm{Me}) ; 1.81(s, \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.39(s) ;$ $143.57(s) ; 140.46(2 s) ; 137.17(s) ; 136.47(s) ; 135.93(s) ; 131.39(2 d) ; 129.92-125.76$ (several $d) ; 101.39(d) ; 76.03$ $(d) ; 75.16(d) ; 72.10(t) ; 71.86(d) ; 71.31(d) ; 69.92(t) ; 67.34(t) ; 22.44(2 q) ; 20.71(q)$.FAB-MS: 644 (46, $\left.[M+1]^{+}\right), 181(14), 107(29), 91$ (100). Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{~S}(643.77)$ : C 67.17, H5.79, N 2.18 ; found: C 67.24, H $6.00, \mathrm{~N} 2.13$.

1,5-Anhydro-2,3-di-O-benzyl-4,6-O-benzylidene-1-hydrazi-D-mannitols (38). A soln. of 37 ( $500 \mathrm{mg}, 0.78$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was treated with a sat. soln. of $\mathrm{NH}_{3}$ in $\mathrm{MeOH}(20 \mathrm{ml})$ and stirred in a closed flask for 48 h. The solvents were evaporated at $25^{\circ} . \mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ of the residue gave $38(250 \mathrm{mg}, 70 \%)$. White foam. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right)$
0.36. $[\alpha]_{\mathrm{D}}^{20}=+22.9\left(c=1.12, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3271 w, 3090 w, 3067 w, 2937 w, 2874 w, 1497 w, 1454 m, 1374 m$, $1347 m, 1314 w, 1281 w, 1100 s, 1065 s, 1028 s, 1003 m, 915 w, 871 w, 611 w, 594 w, 539 w, 532 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$ ): major diastereoisomer 38a ( $\mathrm{ca} .60 \%$ ): $7.60-7.03(\mathrm{~m}, 15$ arom. H$) ; 5.27(\mathrm{~s}, \mathrm{PhCH}) ; 4.94-4.48(m, 4 \mathrm{PhCH})$; $4.45(t, J \approx 9.4, \mathrm{H}-\mathrm{C}(4)) ; 4.11\left(d d, J=4.9,10.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.81(d t, J \approx 4.8,9.8, \mathrm{H}-\mathrm{C}(5)) ; 3.56(d d, J=3.3,9.8$, $\mathrm{H}-\mathrm{C}(3)) ; 3.52\left(t, J \approx 10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.24(d, J \approx 3.2, \mathrm{H}-\mathrm{C}(2)) ; 2.35(d, J=9.2, \mathrm{NH}) ; 1.18(d, J=9.1, \mathrm{NH})$; minor diastereoisomer 38b ( $\mathrm{ca} .40 \$.$% ): 7.60-7.03 ( \mathrm{m}, 15 \mathrm{arom} . \mathrm{H}$ ); $5.26(s, \mathrm{PhCH}) ; 4.94-4.48(m, 4 \mathrm{PhCH}) ; 4.42(t$, $J \approx 9.6, \mathrm{H}-\mathrm{C}(4)) ; 4.04\left(d d, J=4.9,10.3, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.91(d d, J=3.2,9.8, \mathrm{H}-\mathrm{C}(3)) ; 3.52\left(t, J \approx 10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right)$; $3.40(d, J=3.2, \mathrm{H}-\mathrm{C}(2)) ; 3.25(d t, J \approx 4.8,9.7, \mathrm{H}-\mathrm{C}(5)) ; 1.82(d, J=9.3, \mathrm{NH}) ; 1.77(d, J=9.2, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): mixture of 2 diastereoisomers: $138.25(s) ; 138.17(s) ; 137.88(s) ; 137.70(s) ; 137.42(s) ; 137.37$ $(s) ; 129.08-126.17$ (several $d) ; 101.70(2 d) ; 82.53(s) ; 82.24(s) ; 78.62(d) ; 78.19(2 d) ; 78.14(d) ; 78.09(d) ; 77.33(d)$; $73.80(t) ; 73.45(t) ; 72.80(2 t) ; 69.83(d) ; 69.00(d) ; 68.33(2 t)$. FAB-MS: $461\left(46,[M+1]^{+}\right), 307(12), 154(48), 136$ (37), 91 (100). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ (460.54): C 70.42, H 6.13, N 6.08 ; found: C 70.48, H 6.09, N 5.92.

1,5-Anhydro-1-azi-2,3-di-O-benzyl-4,6-O-benzylidene-D-mannitol (7). A soln. of 38 ( $100 \mathrm{mg}, 0.22 \mathrm{mmol}$ ), $\mathrm{Me}_{3} \mathrm{~N}(0.4 \mathrm{ml}, 4.3 \mathrm{mmol})$, and $4-\AA$ molecular sieves ( 500 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.5 \mathrm{ml})$ under Ar at $-50^{\circ}$ was treated dropwise with a soln. of $\mathrm{I}_{2}(52 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The mixture was concentrated at $0^{\circ}$. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. Precipitated $\left(\mathrm{Me}_{3} \mathrm{NH}\right) \mathrm{I}$ and molecular sieves were filtered off, and the filtrate was evaporated at $-20^{\circ}$ to give $7(80 \mathrm{mg}, 80 \%)$ which was immediately used for the next step. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.9: 1\right)$ 0.45 . UV: 348. IR ( $\mathrm{CHCl}_{3}$ ): 3034w, 2977w, 2935w, 2872w, 1637w, 1605w, 1577w, 1497w, 1454w, 1383w, 1372w, $1214 w, 1176 w, 1156 w, 1107 s, 1059 m, 1028 m, 966 w, 917 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ}\right): 7.51-7.25(\mathrm{~m}, 15$ arom. H); $5.65(s, \mathrm{PhCH}) ; 4.99(d, J=11.7, \mathrm{PhCH}) ; 4.70(d, J \approx 11.8,2 \mathrm{PhCH}) ; 4.60(d, J=11.9, \mathrm{PhCH})$; 4.40-4.36 ( $m, \mathrm{H}-\mathrm{C}(4)$ ); 4.19-4.12 ( $m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)$ ); $4.10(d d, J=3.6,9.9, \mathrm{H}-\mathrm{C}(3)) ; 3.83-3.75(m, \mathrm{H}-\mathrm{C}(5)$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 2.94(d, J=3.6, \mathrm{H}-\mathrm{C}(2)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ}\right): 138.12$ ( $s$ ); 137.48 ( $s$ ); 137.47 ( $s$ ); 129.25-1126.30 (several $d$ ); $101.82(d) ; 77.88(d) ; 77.62(d) ; 76.29(d) ; 72.62(t) ; 72.48(t) ; 69.61(d) ; 67.94(t)$; 56.14 (s).

Methyl 2,3-Di-O-benzyl-4,6-O-benzylidene- $\alpha$ - and - $\beta$-D-mannopyranoside ( 39 and 40). A soln. of 7 ( 64 mg , $0.138 \mathrm{~mol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was kept for 16 h at r.t. Evaporation of the solvent and $\mathrm{FC}(5 \mathrm{~g}$, AcOEt/hexane 1:3) of the crude ( 77 mg ) gave 39 ( $47.1 \mathrm{mg}, 73 \%$ ) [69] [68] and $40(17.2 \mathrm{mg}, 27 \%$ ).

Data of 40: $R_{\mathrm{f}}\left(\mathrm{AcOEt} /\right.$ hexane 1:3) 0.23 (39:0.31). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 7.71-7.17$ ( $\boldsymbol{m}, 15 \mathrm{arom} . \mathrm{H}$ ); $5.31(s, \mathrm{PhCH}) ; 5.15(d, J=11.7, \mathrm{PhCH}) ; 4.96(d, J=11.7, \mathrm{PhCH}) ; 4.83(d, J=12.6, \mathrm{PhCH}) ; 4.70(d, J=12.6$, $\mathrm{PhCH}) ; 4.38(t, J \approx 9.5, \mathrm{H}-\mathrm{C}(4)) ; 4.25\left(d d, J=4.9,10.3, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.86(s, \mathrm{H}-\mathrm{C}(1)) ; 3.79(d, J=3.0, \mathrm{H}-\mathrm{C}(2))$; $3.69\left(t, J=10.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.48(d d, J=3.1,9.9, \mathrm{H}-\mathrm{C}(3)) ; 3.30(s, \mathrm{MeO}) ; 3.15(d t, J \approx 4.9,9.7, \mathrm{H}-\mathrm{C}(5))$. CI-MS: $481(31), 480\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 463\left(18,[M+1]^{+}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 138.21(s) ; 138.06(s)$; $137.32(s) ; 128.24-125.78$ (several $d$ ); $103.12(d) ; 101.14(d) ; 78.41(d) ; 77.57(d) ; 75.63(d) ; 74.54(t) ; 72.09(t) ;$ $68.37(t) ; 67.34(d) ; 57.13(q)$.

2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranose (42) [57]. $\mathrm{KO}(t-\mathrm{Bu})(22.1 \mathrm{~g}, 197 \mathrm{mmol})$ was added at $50^{\circ}$ to a soln. of crude 41 [58] ( $46.6 \mathrm{~g}, 87.6 \mathrm{mmol}$ ) in DMSO ( 400 ml ; dried over 4- $\AA$ molecular sieves). The dark brown mixture was stirred for 15 min at $50^{\circ}$ and then poured onto ice ( 500 g ). Extraction with $\mathrm{AcOEt}^{2} \mathrm{Et}_{2} \mathrm{O} 4: 1$ ( $1 \times 600 \mathrm{ml}, 2 \times 300 \mathrm{ml}$ ) and normal workup yielded a crude, crystalline residue ( 43.6 g ; isomerization product) which was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 4: 1(310 \mathrm{ml})$. The soln. was treated with $\mathrm{I}_{2}(40.7 \mathrm{~g}, 160.4 \mathrm{mmol})$, stirred for 15 min at $26^{\circ}$, poured onto ice ( 250 g ), and treated with $10 \%$ aq. $\mathrm{NaHSO}_{3}$ soln. until the mixture turned form dark brown to bright yellow. The mixture was distributed between $\operatorname{AcOEt}(21)$ and $\mathrm{H}_{2} \mathrm{O}$ and the org. phase dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo to 1.5 l , and cooled to $4^{\circ}$ to yield a first crop of pure $42(19.6 \mathrm{~g})$. $\mathrm{FC}\left(1 \mathrm{~kg}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $95: 5)$ of the mother liquor and crystallisation yielded more pure $42(2.40 \mathrm{~g})$. Total yield $22.0 \mathrm{~g}(50 \%)$.
( E )- and (Z)-2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucose Oximes (43) and N -(2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy- $\beta$-D-glucopyranosyl)hydroxylamine (44). $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(14.2 \mathrm{~g}, 204 \mathrm{mmol})$ was added to a soln. of $\mathrm{Na}(4.19 \mathrm{~g}, 182 \mathrm{mmol})$ in $\mathrm{MeOH}(221 \mathrm{ml})$. The mixture was stirred for 15 min , cooled to $0^{\circ}$, and filtered. The residue was washed with $\mathrm{MeOH}(132 \mathrm{ml})$. The pH of the colorless filtrate was $7 . \mathrm{MeOH}(92 \mathrm{ml})$ and $\mathrm{EtOH}(68 \mathrm{ml})$ were added to a slurry of $42(20.8 \mathrm{~g}, 42.3 \mathrm{mmol})$ in the $\mathrm{NH}_{2} \mathrm{OH}$ soln. ( 293 ml ). Heating to $60^{\circ}$ led to a clear soln. which was stirred at this temp. for 33 h . The slightly turbid soln. was filtered, the solvent evaporated, the residue taken up in $\mathrm{CHCl}_{3}(300 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{ml})$, and the aq. layer further extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{ml})$. Normal workup yielded crude $43 / 44(21.7 \mathrm{~g})$. White foam.

Data of 43/44: $[\alpha]_{\mathrm{D}}^{25}=16.5\left(c=1.12, \mathrm{CHCl}_{3}\right)$; constant after 20 min$)$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 w, 3435 m, 3325 m$, $3000 \mathrm{~m}, 2870 \mathrm{~m}, 1670 \mathrm{~s}, 1495 \mathrm{~m}, 1455 \mathrm{~m}, 1365 \mathrm{~m}, 1095 \mathrm{~s}, 1065 \mathrm{~s}, 1030 \mathrm{~s}, 915 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):(E)-43 /(Z)-$ $43 \mathrm{ca} .2: 1,10 \%$ of $44 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}\right.$, $\left(\mathrm{D}_{6}\right)$ DMSO; 44/(E)-43/(Z)-43 42:38:20): data of $(E)-43: 169.15(s)$; $148.21(d) ; 139.03-138.37$ (several $s$ ); 128.57-127.22 (several $d$ ); $79.84(d) ; 79.26(d) ; 74.06(t) ; 73.34(t) ; 72.62(t)$; $71.78(t) ; 69.70(d) ; 49.97(d) ; 22.87(q) ;$ data of $(Z)-43: 169.51(s) ; 149.84(d) ; 139.03-138.37$ (several $s)$;
128.57-127.22 (several d); $81.67(d) ; 78.84(d) ; 74.59(t) ; 74.06(t) ; 72.62(t) ; 71.66(t) ; 70.01(d) ; 46.38(d) ; 22.73$ (q); data of 44: $170.24(s) ; 139.03-138.37$ (several $s$ ); 128.57-127.22 (several d); $91.70(d) ; 83.30(d) ; 78.34(d)$; $75.45(d) ; 74.06(t) ; 72.62(2 t) ; 69.24(t) ; 51.72(d) ; 23.10(q)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}(506.60): \mathrm{C} 68.76, \mathrm{H} 6.77$, N 5.53 ; found: $\mathrm{C} 68.56, \mathrm{H} 6.56, \mathrm{~N} 5.31$.
$\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 96: 4\right)$ of a sample of $\mathbf{4 3 / 4 4}(220 \mathrm{mg})$ gave $\mathbf{4 3}$ ( 130 mg , containing some $\mathbf{4 4}$ ), $\mathbf{4 3} / \mathbf{4 4}(28 \mathrm{mg})$, and pure $44(30 \mathrm{mg})$. Upon standing in $\mathrm{CDCl}_{3}$ soln., 44 was completey transformed into 43 .

Data of 43: $R_{\mathrm{f}}$ (AcOEt) $0.50{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3},(E) /(Z) 7: 3\right): 8.22$ (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.3$ H ), 7.63 (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, 0.7 \mathrm{H}, \mathrm{NOH}$ ); $7.41(d, J=4.0,0.7 \mathrm{H}) ; 6.69(d, J=5.3,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(1))$; $7.39-7.21(m, 15$ arom. H); $6.49(d, J=6.8,0.3 \mathrm{H}), 6.33(d, J=8.0,0.7 \mathrm{H}, \mathrm{AcN} H) ; 5.26(d d d, J=1.7,5.5,7.0,0.3$ H ), 5.00 ( $d d d, J=2.9,3.9,7.8,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.74-4.47(m, 6 \mathrm{PhCH}) ; 4.25(d d, J=1.7,4.7,0.3 \mathrm{H}), 4.06(d$, $J=2.9,5.2,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.97-3.90\left(\mathrm{~m}\right.$, addn. of $\mathrm{D}_{2} \mathrm{O} \rightarrow$ change of signal, $\left.\mathrm{H}-\mathrm{C}(5)\right) ; 3.71-3.59(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4), 2$ $\mathrm{H}-\mathrm{C}(6)) ; 2.95\left(d, J=6.6\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.7 \mathrm{H}\right), 2.87\left(d, J=6.5\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 0.3 \mathrm{H}, \mathrm{OH}-\mathrm{C}(5)\right) ; 1.90$ $(s, 2.1 \mathrm{H}) ; 1.85(s, 0.9 \mathrm{H}, \mathrm{AcN})$. CI-MS: $507\left(12,[M+1]^{+}\right), 506(17), 491(39), 489(30), 462(15), 420(10), 383(30)$, 382 (15), 381 (100), 374 (12).

Data of 44: $R_{\mathrm{f}}(\mathrm{AcOEt}) 0.06 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.43-7.28(\mathrm{~m}, 13$ arom. H$) ; 7.24-7.19(\mathrm{~m}, 2$ arom. H ); 6.62 (br. $s$, exchange with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}$ ); 5.37 (br. $s$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 4.88(d, J=12.1, \mathrm{PhCH}) ; 4.85(d$, $J=7.9$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{AcN} H\right) ; 4.83(d, J=10.8, \mathrm{PhCH}) ; 4.64(d, J=12.1, \mathrm{PhCH}) ; 4.58(d, J=10.7$, $\left.\mathrm{PhCH}) ; 4.58(s, \mathrm{PhCH})_{2}\right) ; 4.05\left(d d d, J=8.1,9.5,10.3\right.$, addn. of $\left.\mathrm{D}_{2} \mathrm{O} \rightarrow d d, J=9.5,10.3, \mathrm{H}-\mathrm{C}(2)\right) ; 3.79(d, J=9.3$, $\mathrm{H}-\mathrm{C}(1)) ; 3.74(d d, J=2.1,10.6, \mathrm{H}-\mathrm{C}(6)) ; 3.67\left(d d, J=5.3,10.6, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.62(d d, J=8.5,9.6, \mathrm{H}-\mathrm{C}(4)) ; 3.5 \mathrm{I}$ $(d d, J=8.4,10.5, \mathrm{H}-\mathrm{C}(3)) ; 3.50(d d d, J=2.1,5.3,9.5, \mathrm{H}-\mathrm{C}(5)) ; 1.77(s, \mathrm{AcN}) . \mathrm{CI}-\mathrm{MS}: 507\left(11,[M+1]^{+}\right), 491$ (8), 489 (9), 420 (9), 383 (12), 382 (21), 381 (100).

2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-gluconhydroximo-1,5-lactone (45). A soln. of $\mathrm{NaIO}_{4}$ ( $17.4 \mathrm{~g}, 81.4$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(330 \mathrm{ml})$ was added within 105 min at $50^{\circ}$ to a soln. of crude $43 / 44(20.9 \mathrm{~g}, 40.7 \mathrm{mmol})$ and NaOAc $(5.54 \mathrm{~g}, 67.5 \mathrm{mmol})$ in abs. $\mathrm{EtOH}(955 \mathrm{ml})$. A white precipitate formed immediately. After stirring for 17.75 h under $\mathrm{N}_{2}$, the suspension was filtered and the filtrate evaporated. The remaining slurry was taken up in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and $\operatorname{AcOEt}(400 \mathrm{ml})$. The aq. layer was extracted with $\mathrm{AcOEt}(2 \times 100 \mathrm{ml})$, which was washed with $5 \% \mathrm{aq}$. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ soln. ( 250 ml ), $\mathrm{H}_{2} \mathrm{O}(2 \times 150 \mathrm{ml})$, and brine ( 150 ml ). Normal workup yielded crude $45(20.0 \mathrm{~g})$ as a yellow foam, which was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized in AcOEt/hexane: pure $45(11.9 \mathrm{~g})$. $\mathrm{FC}(450 \mathrm{~g}$, $\mathrm{AcOEt} \rightarrow \mathrm{AcOEt} / \mathrm{MeOH} 95: 5$ ) of the mother liquor and crystallization (AcOEt/hexane) gave further 45 ( 2.49 g , $70 \%$ from 42). $R_{\mathrm{F}}(\mathrm{AcOEt}) 0.32 .[\alpha]_{\mathrm{D}}^{25}=24.5\left(c=1.08, \mathrm{CHCl}_{3}\right)$. M.p. $119-120^{\circ}$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 w, 3435 m$, $3000 \mathrm{~m}, 2870 \mathrm{~m}, 1670 \mathrm{~s}, 1495 \mathrm{~m}, 1453 \mathrm{~m}, 1365 \mathrm{~m}, 1295 \mathrm{~m}, 1080 \mathrm{~s}, 1027 \mathrm{~m}, 995 \mathrm{~m}, 935 \mathrm{~m}, 910 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.36-7.29(m, 13$ arom. $\mathrm{H}, \mathrm{NOH}) ; 7.21-7.19(m, 2$ arom. H$) ; 6.19(d, J=8.5, \mathrm{NH}) ; 4.86(d d, J=6.5,8.5$, $\mathrm{H}-\mathrm{C}(2)) ; 4.73(d, J=11.8, \mathrm{PhC} H) ; 4.68(d, J=11.8, \mathrm{PhCH}) ; 4.64(d, J=11.2, \mathrm{PhCH}) ; 4.56(d, J=11.1, \mathrm{PhC} H)$; $4.55\left(s, \mathrm{PhCH}_{2}\right) ; 4.33(t d, J=4.6,6.2, \mathrm{H}-\mathrm{C}(5)) ; 3.89(t, J=6.2, \mathrm{H}-\mathrm{C}(4)) ; 3.78(t, J=6.4, \mathrm{H}-\mathrm{C}(3)) ; 3.78(d d$, $J=4.7,11.2, \mathrm{H}-\mathrm{C}(6)) ; 3.74\left(d d, J=4.1,10.9, \mathrm{H}^{-}-\mathrm{C}(6)\right) ; 1.88(s, \mathrm{AcN}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.49(s)$; $151.51(s) ; 137.59(s) ; 137.49(s) ; 137.17(s) ; 128.28-127.62(\mathrm{~m}) ; 79.13(d) ; 78.63(d) ; 73.64(d) ; 73.42(t) ; 73.30$ (2t); $68.25(t) ; 49.24(d) ; 22.95(q)$ CI-MS: 506 (17), $505\left(22,[M+1]^{+}\right), 489(20), 382(22), 381(100), 379(12)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}(504.58)$ : C 69.03, H 6.39, N 5.55 ; found: C 69.25, H 6.53, N 5.49.
(2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosylidene) amino 4-Methylbenzene-1-sulfonate (46). At $0^{\circ}$, a soln. of $45(5.00 \mathrm{~g}, 9.91 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(3.7 \mathrm{ml}, 26.5 \mathrm{mmol})$ and, after 5 min , with $\mathrm{TsCl}(2.84 \mathrm{~g}, 14.9 \mathrm{mmol})$, stirred for 3 h under $\mathrm{N}_{2}$, and then poured onto ice-water ( 150 ml ). Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$ and normal workup yielded crude 46 ( 7.82 g ). $\mathrm{FC}\left(300 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / $\mathrm{MeOH} 98: 2)$ gave colorless, spontaneously crystallizing $46(6.45 \mathrm{~g}, 100 \%) . R_{\mathrm{f}}(\mathrm{AcOEt}) 0.81 .[\alpha]_{\mathrm{D}}^{25}=16.3(c=1.10$, $\mathrm{CHCl}_{3}$ ). M.p. $99-100^{\circ}$, IR $\left(\mathrm{CHCl}_{3}\right): 3435 w, 3000 \mathrm{~m}, 2925 m, 2870 \mathrm{~m}, 1685 \mathrm{~s}, 1645 \mathrm{~m}, 1600 \mathrm{~m}, 1495 \mathrm{~m}, 1453 \mathrm{~m}, 1370 \mathrm{~s}$, $1295 m, 1175 s, 1093 s, 1075 s, 1028 m, 830 s, 695 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.82-7.78(\mathrm{~m}, 2$ arom. H$) ; 7.37-7.16$ $(m, 17$ arom. H$) ; 5.90(d, J=8.2, \mathrm{NH}) ; 4.68(d d, J=7.0,8.1, \mathrm{H}-\mathrm{C}(2)) ; 4.67(d, J=11.7, \mathrm{PhCH}) ; 4.63(d, J=11.0$, $\mathrm{PhCH}) ; 4.62(d, J=11.7, \mathrm{PhCH}) ; 4.56(d, J=12.0, \mathrm{PhC} H) ; 4.53(d, J=11.0, \mathrm{PhCH}) ; 4.50(d, J=12.0, \mathrm{PhC} H)$; $4.31(d t, J=3.7,7.3, \mathrm{H}-\mathrm{C}(5)) ; 3.89(t, J \approx 6.9, \mathrm{H}-\mathrm{C}(4)) ; 3.80(t, J=6.8, \mathrm{H}-\mathrm{C}(3)) ; 3.76(d d, J=3.6,11.1$, $\mathrm{H}-\mathrm{C}(6)) ; 3.71\left(d d, J=4.0,11.1, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 2.40(s, \mathrm{Me}) ; 1.80(s, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.71(s)$; $158.54(s) ; 144.77(s) ; 137.48(s) ; 137.37(s) ; 137.06(s) ; 132.10(s) ; 129.32-127.63$ (several $d) ; 79.95(d) ; 78.26(d) ;$ $75.37(d) ; 73.55(t) ; 73.30(t) ; 73.19(t) ; 67.81(t) ; 49.24(d) ; 22.72(q) ; 21.48(q)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ (658.77): C 65.64, H 5.81, N 4.25; found: C 65.61, H 5.95, N 4.41.

2-Acetamido-1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-I-hydrazi- D -glucitols (47). MeOH ( 30 ml ) was cooled to $0^{\circ}$, saturated with $\mathrm{NH}_{3}$, diluted with $\mathrm{MeOH}(30 \mathrm{ml})$, cooled to $-20^{\circ}$, and treated with a cold ( $-20^{\circ}$ ) soln. of 46 ( 500 $\mathrm{mg}, 0.759 \mathrm{mmol}$ ) in $\mathrm{MeOH}(13 \mathrm{ml})$. The soln. was kept for $168 \mathrm{~h} \mathrm{at}-20^{\circ}$ (TLC: traces of 46), concentrated to 10 ml at $30^{\circ} / 100 \mathrm{mbar}$, and cooled to $-20^{\circ}$ yielding a first crop of $47(116 \mathrm{mg})$. The mother liquor was cooled to $0^{\circ}$ and
treated with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$. The precipitate ( 79 mg of $\mathrm{NH}_{4} \mathrm{OTs}$ ) was filtered off. After evaporation of the filtrate, the residue was dried for 15 min in vacuo and suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After filtration, the filtrate was treated with pentane ( 100 ml ) and left overnight at $-20^{\circ}$ affording a second crop of 47 ( 193 mg , sticky, yellowish crystals containing $c a .20 \%$ of several by-products). Total yield of $47 \mathrm{ca} .70 \% . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} 95: 5: 0.5\right)$ : 0.23 , 0.19. IR ( $\mathrm{CHCl}_{3}$ ): $3425 w, 3280 w, 3000 w, 2870 w, 1685 \mathrm{~s}, 1500 \mathrm{~m}, 1455 \mathrm{~m}, 1370 \mathrm{~m}, 1320 \mathrm{~m}, 1100 \mathrm{~s}, 1000 \mathrm{~m}, 915 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathbf{4 7 a} / \mathbf{4 7 b} 85: 15\right)$ : major isomer 47a: $7.38-7.20(m, 15$ arom. H ); $5.19(d, J=9.5$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{AcN} H\right) ; 4.88(d, J=11.5, \mathrm{PhC} H) ; 4.84(d, J=10.8, \mathrm{PhC} H) ; 4.66(d, J=11.5, \mathrm{PhC} H) ; 4.65$ $\left(t, J \approx 9.8\right.$, addn. of $\left.\mathrm{D}_{2} \mathrm{O} \rightarrow d, J=10.2, \mathrm{H} \rightarrow \mathrm{C}(2)\right) ; 4.64(d, J=10.8, \mathrm{PhC} H) ; 4.60(d, J=12.1, \mathrm{PhCH}) ; 4.50(d$, $J=12.1, \mathrm{PhCH}) ; 3.94(t, J=9.3, \mathrm{H}-\mathrm{C}(4)) ; 3.75(d d, J=4.1,10.9, \mathrm{H}-\mathrm{C}(6)) ; 3.68\left(d, J=2.1,11.0, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.61$ $(d d, J=8.8,10.2, \mathrm{H}-\mathrm{C}(2)) ; 3.60(d d d, J=2.1,4.1,10.2, \mathrm{H}-\mathrm{C}(5)) ; 2.33\left(d, J=9.3\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 1.95$ ( $d, J=9.2$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 1.79(s, \mathrm{AcN})$; minor isomer $47 \mathrm{~b}: 6.07\left(d, J=8.6\right.$, exchange with $\mathrm{D}_{2} \mathrm{O}$, $\mathrm{AcN} H) ; 4.56(d, J=12.1, \mathrm{PhC} H) ; 4.45(d, J=12.1, \mathrm{PhC} H) ; 4.25\left(d d, J=6.6,8.1\right.$, addn. of $\mathrm{D}_{2} \mathrm{O} \rightarrow d, J=6.6$, $\mathrm{H}-\mathrm{C}(2)) ; 4.20(\mathrm{br} . q, J \approx 5.2,1 \mathrm{H}) ; 3.88-3.80(\mathrm{~m}, 2 \mathrm{H}) ; 2.50\left(d, J=9.5\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 2.26(d, J=9.4$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right) ; 1.82(\mathrm{~s}, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 10^{\circ}\right): 170.85(\mathrm{~s}) ; 137.74(\mathrm{~s}) ; 137.50(\mathrm{~s})$; $137.39(s) ; 128.52-127.67$ (several $d) ; 82.04(d) ; 81.75(s) ; 77.74(d) ; 76.47(d) ; 74.99(t) ; 74.68(t) ; 73.42(t) ; 67.96$ (t); $49.79(d) ; 23.23(q)$. CI-MS: $504\left(27,[M+1]^{+}\right), 489(10), 462(11), 397(19), 396$ (75), 382 (12), 381 (52), 288 (99), 273 (26), 272 (25), 270 (100), 180 (27), 108 (35).

2-Acetamido-I,5-anhydro-1-azi-3,4,6-tri-O-benzyl-2-deoxy-D-glucitol (8). $\mathrm{MeOH}(60 \mathrm{ml})$ was cooled to $0^{\circ}$, saturated with $\mathrm{NH}_{3}$, cooled to $-20^{\circ}$, and treated with a cold ( $-20^{\circ}$ ) soln. of $46(500 \mathrm{mg}, 0.759 \mathrm{mmol})$ in MeOH $(13 \mathrm{ml})$. The soln. was kept for $64 \mathrm{~h} \mathrm{at}-20^{\circ}$ to complete formation of 47 , concentrated to 10 ml at $23^{\circ}$ in vacuo (partial crystallization of 47), cooled to $0^{\circ}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml} ; \rightarrow$ clear soln.) and $\mathrm{MeOH}(25 \mathrm{ml})$, and treated with $\mathrm{Et}_{3} \mathrm{~N}(420 \mu \mathrm{l}, 3.04 \mathrm{mmol})$, and then dropwise within 30 min with a soln. of $\mathrm{I}_{2}(385 \mathrm{mg}, 1.518 \mathrm{mmol})$ in $\mathrm{MeOH}(14 \mathrm{ml})$. The mixture was stirred for 3 h at $0^{\circ}$ (orange soln.), concentrated at $23^{\circ}$ to 20 ml , and cooled to $-20^{\circ}$ to complete crystallization. Filtration and drying in vacuo gave 8 ( $257 \mathrm{mg}, 68 \%$ from 46 ). $R_{\mathrm{f}}\left(\mathrm{AcOEt} /\right.$ hexane $/ \mathrm{Et}_{3} \mathrm{~N}$ 2:1:0.015) 0.69. M.p. $107-114^{\circ}$ (dec.; AcOEt/hexane). UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 352(72), 246$ (375). $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 359(0.53)$, $315(0), 295(-0.9), 278(0)$. IR ( $\mathrm{CHCl}_{3}$ ): $3430 \mathrm{~m}, 3000 \mathrm{~m}, 2920 \mathrm{~m}, 2870 \mathrm{~m}, 1675 \mathrm{~s}, 1600 \mathrm{~m}, 1495 \mathrm{~m}, 1450 \mathrm{~m}, 1360 \mathrm{~m}$, $1070 \mathrm{~s}, 1025 \mathrm{~s}, 908 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.44-7.24(m, 15$ arom. H ); 4.88 ( $d, J=8.1, \mathrm{NH}$ ); 4.79 (d, $J=12.0, \mathrm{PhC} H) ; 4.77(d, J=10.9, \mathrm{PhCH}) ; 4.66(d, J=10.9, \mathrm{PhCH}) ; 4.65(d, J=12.1, \mathrm{PhC} H) ; 4.54(d, J=12.0$, $\mathrm{PhCH}) ; 4.47(d, J=12.0, \mathrm{PhCH}) ; 4.35(t, J=8.3, \mathrm{H}-\mathrm{C}(2)) ; 3.94(t, J=7.4, \mathrm{H}-\mathrm{C}(4)) ; 3.86(d d d, J=3.3,4.2,7.5$, $\mathrm{H}-\mathrm{C}(5)) ; 3.77(d d, J=7.0,8.5, \mathrm{H}-\mathrm{C}(3)) ; 3.76(d d, J=4.4,10.9, \mathrm{H}-\mathrm{C}(6)) ; 3.64\left(d d, J=3.2,10.9, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 1.64$ $(s, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 10^{\circ}\right): 169.58(s) ; 137.46(s) ; 137.44(s) ; 137.21(s) ; 128.73-127.72$ (several $d) ; 79.34(d) ; 77.00(d) ; 76.73(d) ; 74.56(t) ; 73.97(t) ; 73.43(t) ; 67.57(t) ; 56.48(s) ; 48.87(d) ; 22.80(q)$ CI-MS: 475 (33), $474\left(100,\left[M-N_{2}+1\right]^{+}\right), 383(30), 366(43), 260(16), 259(13), 258(81), 150(15), 108(26), 106(40)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}(501.58)$ : C 69.44, H 6.23, N 8.38; found: C 69.35, H 6.48, N 8.16.

Methyl 2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy- $\alpha-\mathrm{D}-$ and $-\beta$-1-glucopyranoside ( 48 and 49 [70]). The pooled soln. of the kinetic experiments (see below) was evaporated and the crystalline residue dried under high vacuum. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \alpha-\mathrm{D} / \beta-\mathrm{d} 2: 1\right): 7.36-7.17(m, 15$ arom. H); $5.51(d, J=8.1,0.33 \mathrm{H}), 5.29(d, J=9.3$, $0.67 \mathrm{H}, \mathrm{NH}) ; 4.84(d, J=11.6,0.67 \mathrm{H}), 4.82(d, J=11.7,0.33 \mathrm{H}), 4.81(d, J=10.7,0.67 \mathrm{H}), 4.78(d, J=11.7,0.33$ $\mathrm{H}, 2 \mathrm{PhCH}) ; 4.71(d, J=7.7,0.33 \mathrm{H}), 4.68(d, J=3.7,0.67 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.64(d, J=12.1,0.67 \mathrm{H}), 4.635(d$, $J=10.9,0.67 \mathrm{H}), 4.62(d, J=10.2,0.33 \mathrm{H}), 4.59(d, J=12.2,0.33 \mathrm{H}), 4.55(d, J=12.2,0.33 \mathrm{H}), 4.545(d, J=10.6$, $0.33 \mathrm{H}), 4.535(d, J=10.9,0.67 \mathrm{H}), 4.53(d, J=12.2,0.67 \mathrm{H}, 4 \mathrm{PhCH}) ; 4.26(d t, J=3.7,9.7,0.67 \mathrm{H}), 3.45(t d$, $J=7.8,9.5,0.33 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)) ; 4.06(d d, J=7.9,9.6,0.33 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)) ; 3.79-3.59(m, 4.67 \mathrm{H}) ; 3.48(s, 1 \mathrm{H}), 3.33(s$, $2 \mathrm{H}, \mathrm{MeO}$ ); $1.86(s, 1 \mathrm{H}), 1.84(s, 2 \mathrm{H}, \mathrm{AcN})$. CI-MS: $507(16), 506\left(100,[M+1]^{+}\right), 475(32), 474(100$, [ $M-\mathrm{MeO}]^{+}$), 234 (27), 168 (20), 108 (11).

Methyl 2-Acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy- $\alpha$-D- and - $\beta$-D-allopyranoside ( 54 and 55). The pooled soln. of the kinetic experiments (see below; $100.5 \mathrm{mg}(0.245 \mathrm{mmol})$ of 9 ) was evaporated and the crystalline residue ( ${ }^{1} \mathrm{H}$-NMR: $\alpha-\mathrm{D} / \beta$-d $58: 42$ ) dried under high vacuum. $\mathrm{HPLC}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 98: 2,6.3 \mathrm{ml} / \mathrm{min}\right)$ yielded 54 ( $40.8 \mathrm{mg}, 40 \%$ ) and 55 ( $33.6 \mathrm{mg}, 33 \%$ ).

Data of 54: $R_{\mathrm{f}}(\mathrm{AcOEt} / \mathrm{hexane} 2: 1) 0.42$. HPLC (see above): $t_{\mathrm{R}} 23.8 \mathrm{~min} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $7.51-7.47(m, 2$ arom. H); $7.42-7.28(m, 8$ arom. H); $5.99(d, J=9.3, \operatorname{AcNH}) ; 5.56(s, \mathrm{PhCH}) ; 5.02(d, J=12.3$, $\mathrm{PhC} H) ; 4.61(d, J=4.5, \mathrm{H}-\mathrm{C}(1)) ; 4.57(d, J=12.4, \mathrm{PhCH}) ; 4.39-4.28\left(m, \mathrm{H}-\mathrm{C}(5), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.27(t d, J \approx 4.1$, 9.4, $\mathrm{H}-\mathrm{C}(2)) ; 4.05(t, J \approx 3.1, \mathrm{H}-\mathrm{C}(3)) ; 3.80-3.72\left(\mathrm{~m}, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.72(d d, J=2.6,9.4, \mathrm{H}-\mathrm{C}(4)) ; 3.41(s, \mathrm{MeO})$; $1.83(s, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.22(s) ; 138.53(s) ; 137.51(s) ; 128.99-126.12$ (several $\left.d\right) ; 101.95$ (d); $98.30(d) ; 79.70(d) ; 74.40(t) ; 73.82(d) ; 69.22(t) ; 57.62(d) ; 55.91(q) ; 48.93(d) ; 22.97(q)$ CI-MS: $415(25)$, $414\left(100,[M+1]^{+}\right), 383(15), 382\left(67,[M-\mathrm{MeO}]^{+}\right), 309(45)$.

Data of 55: $R_{\mathrm{f}}$ (AcOEt/hexane 2:1) 0.42. HPLC (see above): 25.3 min . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.56-7.48$ ( $m, 2$ arom. H); 7.43-7.31 ( $m, 8$ arom. H); $5.70(d, J=8.8, \mathrm{AcN} H) ; 5.55(s, \mathrm{PhCH}) ; 5.03(d, J=11.6, \mathrm{PhC} H) ; 4.55$ $(d, J=8.1, \mathrm{H}-\mathrm{C}(1)) ; 4.54(d, J=11.6, \mathrm{PhCH}) ; 4.41\left(d d, J=5.1,10.4, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.18-4.09(m, \mathrm{H}-\mathrm{C}(2)$, $\mathrm{H}-\mathrm{C}(3)) ; 4.10(d t, J=5.4,9.9, \mathrm{H}-\mathrm{C}(5)) ; 3.81\left(t, J=10.3, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.74(d d, J=2.1,9.5, \mathrm{H}-\mathrm{C}(4)) ; 3.47(s$, $\mathrm{MeO}) ; 1.86(s, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.31(s) ; 138.19(s) ; 137.38(s) ; 129.02-126.05$ (several $\left.d\right)$; $101.95(d) ; 101.11(d) ; 80.13(d) ; 75.85(d) ; 74.68(t) ; 69.14(t) ; 63.72(d) ; 56.52(q) ; 51.82(d) ; 23.17(q)$ CI-MS: 415 (24), 414 (100, $[M+1]^{+}$), 382 ( $37,[M-\mathrm{MeO}]^{+}$), 274 (25).

Determination of the Activation Energy of the Diazirines 1 and 4-9. In a Schlenk tube equipped with a magnetic stirring bar, a immersion-cell, and a thermo element, the diazirine ( ca. 30 mg each) was dissolved in abs. MeOH ( 5 ml ), with the exception of 1 and 8 which were poorly soluble and of which a sat. soln. ( $<20 \mathrm{mg}$ ) was used. The temp. was controlled by an external water bath. When the mixture had reached a constant temp., 12 readings of absorption were taken during at least one half-life period. $k_{1}$ was calculated using a least-square-fit linear regression. The clear, colorless solns. of each experiment were pooled, the solvent was evaporated, and a ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the crude mixture was measured. In all cases, only signals of the corresponding methyl glycopyranosides were observed. Their structures were confirmed by NMR and CI-MS (see above).

1: $\quad T(1)=292.7 \quad \mathrm{~K}, \quad k_{1}(1)=1.725 \cdot 10^{-4} ; \quad T(2)=297.5 \quad \mathrm{~K}, \quad k_{1}(2)=3.412 \cdot 10^{-4} ; \quad T(3)=303.0 \quad \mathrm{~K}$, $k_{1}(3)=6.626 \cdot 10^{-4} . E_{\mathrm{A}}=23.0 \mathrm{kcal} / \mathrm{mol}, \log A=13.4, \tau(298 \mathrm{~K})=33 \mathrm{~min} ; \Delta S^{\neq}=1.7 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{+}=22.4$ $\mathrm{kcal} / \mathrm{mol}$.

4: $\quad T(1)=297.6 \quad \mathrm{~K}, \quad k_{1}(1)=5.918 \cdot 10^{-5} ; \quad T(2)=302.1 \quad \mathrm{~K}, \quad k_{1}(2)=1.158 \cdot 10^{-4} ; \quad T(3)=307.4 \quad \mathrm{~K}$, $k_{1}(3)=2.296 \cdot 10^{-4} ; T(4)=312.4 \mathrm{~K}, k_{1}(4)=4.425 \cdot 10^{-4} . E_{\mathrm{A}}=25.0 \mathrm{kcal} / \mathrm{mol}, \log A=14.1, \tau(298 \mathrm{~K})=202 \mathrm{~min}$; $\Delta S^{\neq}=4.8 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=24.0 \mathrm{kcal} / \mathrm{mol}$.

5: $\quad T(1)=291.2 \quad \mathrm{~K}, \quad k_{1}(1)=4.369 \cdot 10^{-5} ; \quad T(2)=303.1 \quad \mathrm{~K}, \quad k_{1}(2)=1.996 \cdot 10^{-4} ; \quad T(3)=307.9 \quad \mathrm{~K}$, $k_{1}(3)=3.508 \cdot 10^{-4} . E_{\mathrm{A}}=22.2 \mathrm{kcal} / \mathrm{mol}, \log A=12.4, \tau(298 \mathrm{~K})=110 \mathrm{~min} ; \Delta S^{\neq}-3.2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=21.7$ $\mathrm{kcal} / \mathrm{mol}$.

6: $T(1)=273.3 \quad \mathrm{~K}, \quad k_{1}(1)=4.949 \cdot 10^{-5} ; \quad T(2)=285.4 \quad \mathrm{~K}, \quad k_{1}(2)=3.345 \cdot 10^{-4} ; T(3)=289.4 \mathrm{~K}, \quad k_{1}(3)$ $=5.374 \cdot 10^{-4}, T(4)=293.6 \mathrm{~K}, k_{1}(4)=9.354 \cdot 10^{-4} . E_{\mathrm{A}}=23.2 \mathrm{kcal} / \mathrm{mol}, \log A=14.2, \tau(298 \mathrm{~K})=6.7 \mathrm{~min}$; $\Delta S^{\neq}=5.5 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=22.6 \mathrm{kcal} / \mathrm{mol}$.

7: $T(1)=273.3 \mathrm{~K}, k_{1}(1)=2.4084 \cdot 10^{-5} ; T(2)=283.4 \mathrm{~K}, \quad k_{1}(2)=1.6017 \cdot 10^{-5} ; T(3)=289.0 \mathrm{~K}, k_{1}(3)$ $=1.8046 \cdot 10^{-4} . E_{\mathrm{A}}=20.0 \mathrm{kcal} / \mathrm{mol}, \log A=11.4, \tau(298 \mathrm{~K})=23 \mathrm{~min}, \Delta S^{\neq}=-8.2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=19.5$ $\mathrm{kcal} / \mathrm{mol}$.

8: $\quad T(1)=297.0 \quad \mathrm{~K}, \quad k_{1}(1)=8.894 \cdot 10^{-5} ; \quad T(2)=307.5 \quad \mathrm{~K}, \quad k_{1}(2)=3.228 \cdot 10^{-4} ; \quad T(3)=314.0 \quad \mathrm{~K}$, $k_{1}(3)=7.087 \cdot 10^{-4} \cdot E_{\mathrm{A}}=22.6 \mathrm{kcal} / \mathrm{mol}, \log A=12.6, \tau(298 \mathrm{~K})=112 \mathrm{~min} ; \Delta S^{\neq}=-3.1 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=22.0$ $\mathrm{kcal} / \mathrm{mol}$.

9: $T(1)=308.2 \mathrm{~K}, \quad k_{1}(1)=1.429 \cdot 10^{-5} ; \quad T(2)=316.7 \mathrm{~K}, \quad k_{1}(2)=4.823 \cdot 10^{-5} ; \quad T(3)=322.9 \mathrm{~K}, \quad k_{1}(3)$ $=1.249 \cdot 10^{-4} ; T(4)=330.4 \mathrm{~K}, k_{1}(4)=3.009 \cdot 10^{-4} . E_{\mathrm{A}}=28.1 \mathrm{kcal} / \mathrm{mol}, \log A=15.1, \tau(298 \mathrm{~K})=4159 \mathrm{~min}$; $\Delta S^{\neq}=8.1 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} ; \Delta H^{\neq}=27.2 \mathrm{kcal} / \mathrm{mol}$.

Thermolysis of 1 . a) In MeCN. A soln. of $1(220 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{MeCN}(4.5 \mathrm{ml})$ was stirred under $\mathrm{N}_{2}$ at $23^{\circ}$ for 16 h . Evaporation and FC (hexanc $\rightarrow$ hexane/AcOEt 6:1) of the residue gave 56 ( $99.4 \mathrm{mg}, 46 \%$ ), 57 ( 11 mg , $5 \%$ ), $\mathbf{5 6} / 58$ ( $9 \mathrm{mg}, 4 \%$ ), and $59\left(6 \mathrm{mg}, 3 \%\right.$ ). A soln. of $\mathbf{5 6} / 58$ in $\mathrm{CDCl}_{3}$ was completely transformed into $\mathbf{5 6}$ after storage for 1 week at $4^{\circ}$.
b) Neat. Crystalline $1(40 \mathrm{mg}, 0.073 \mathrm{mmol})$ was kept in a closed flask at r.t. for 2 h . FC (hexane/AcOEt 4:1) of the resulting yellow oil afforded $\mathbf{5 9}\left(7 \mathrm{mg}, \mathbf{1 8} \%\right.$ ) and a mixture $56 \mathbf{5 8}(17 \mathrm{mg}, 44 \%)$. A soln. of $\mathbf{5 6} \mathbf{5 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was kept at r.t. for 3 d , whereupon the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (integration of $\mathrm{H}-\mathrm{C}(2)$ signals) showed signals only of $\mathbf{5 6}$ and 57 in a ca. $3: 1$ ratio.

Data of ( $\mathbf{Z}, \mathrm{Z}$ )-2,3,4,6-Tetra-O-benzyl- D -glucono-I,5-lactone Azine (56). $R_{\mathrm{f}}$ (hexane/AcOEt 4:1) 0.12. M.p. $116-7^{\circ}$. IR $\left(\mathrm{CHCl}_{3}\right): 3080 w, 3060 w, 3030 w, 2990 w, 2900 \mathrm{~m}, 2860 \mathrm{~m}, 1950 w, 1875 w, 1810 w, 1645 m, 1490 w, 1450 w$, $1350 \mathrm{~m}, 1065 \mathrm{~s}, 1025 \mathrm{~s}, 990 \mathrm{~m}(\mathrm{sh}), 905 \mathrm{w} .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : 7.43-7.41 ( $\mathrm{m}, 2$ arom. H ); 7.35-7.17 ( $\mathrm{m}, 16$ arom. H); 7.14-7.11 ( $m, 2$ arom. H); $4.85(d, J=12.0, \mathrm{PhCH}) ; 4.66(d, J=12.1, \mathrm{PhC} H) ; 4.62(d t, J=3.2,10.3$, $\mathrm{H}-\mathrm{C}(5)) ; 4.60-4.51(m, 2 \mathrm{PhCH}) ; 4.474 .41(m, 2 \mathrm{PhCH}) ; 4.35(d, J=11.6, \mathrm{PhCH}) ; 4.33(d, J=12.0, \mathrm{PhCH})$; $4.28(d, J=1.7, \mathrm{H}-\mathrm{C}(2)) ; 3.93(d d, J=1.7,4.7, \mathrm{H}-\mathrm{C}(3)) ; 3.82(d d, J=4.7,10.3, \mathrm{H}-\mathrm{C}(4)) ; 3.72(d, J=3.2,2$ $\mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 149.2(\mathrm{~s}) ; 138.0(\mathrm{~s}) ; 137.8(\mathrm{~s}) ; 137.4(\mathrm{~s}) ; 137.3(\mathrm{~s}) ; 128.6-127.4$ (several $\left.d\right)$; $81.8(d) ; 77.6(d) ; 75.6(d) ; 74.2(d) ; 73.4(t) ; 72.8(t) ; 71.2(t) ; 70.2(t) ; 68.9(t)$. CI-MS: $1073\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{68} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{10}(1073.29)$ : C 76.10, H 6.39, N 2.61; found: C 76.39, H 6.11, N 2.43.

Data of (E,E)-2,3,4,6-Tetra-O-benzyl-D-glucono-1,5-lactone Azine (57). $R_{\mathrm{f}}$ (hexane/AcOEt 4:1) 0.22. IR $\left(\mathrm{CHCl}_{3}\right): 3090 w, 3060 w, 3000 w, 2960 \mathrm{~m}, 2930 \mathrm{~m}, 2860 \mathrm{~m}, 1950 w, 1875 w, 1810 w, 1635 m, 1495 w, 1455 w, 1360 w$, $1340 w, 1260 s, 1090 s, 1015 s, 910 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.42-7.39(m, 2$ arom. H ) ; 7.35-7.20( $m, 16$ arom.
H); 7.17-7.13 ( $m, 2$ arom. H ); $5.64(d, J=1.6, \mathrm{H}-\mathrm{C}(2)) ; 4.70(d d d, J=1.9,4.5,10.1, \mathrm{H}-\mathrm{C}(5)) ; 4.66(d, J=12.1$, $\mathrm{PhCH}) ; 4.66\left(s, \mathrm{PhCH}_{2}\right) ; 4.58(d, J=12.1, \mathrm{PhCH}) ; 4.56(d, J=11.8, \mathrm{PhC} H) ; 4.52(d, J=11.5, \mathrm{PhCH}) ; 4.41(d$, $J=11.5, \mathrm{PhCH}) ; 4.31(d, J=11.8, \mathrm{PhC} H) ; 3.94(d d, J=1.8,3.8, \mathrm{H}-\mathrm{C}(3)) ; 3.86(d d, J=1.9,11.2, \mathrm{H}-\mathrm{C}(6))$; $3.80-3.76\left(m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}^{\prime}-\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 163.7(s) ; 138.3(s) ; 137.9(s) ; 137.8(s) ; 137.4(s) ;$ 128.4-127.5 (several d); $80.4(d) ; 77.8(d) ; 75.4(d) ; 73.5(t) ; 72.5(t) ; 71.5(t) ; 71.2(t) ; 69.0(t) ; 67.6(d)$. CI-MS: $1073\left([M+1]^{+}\right.$.
${ }^{1} H-N M R$ Data of (E,Z)-2,3,4,6-Tetra-O-benzyl-D-glucono-I,5-lactone Azine (58). Difference spectrum between $56 / 58$ and 56: 7.4-7.1 ( $\mathrm{m}, 40$ arom. H ); $5.42\left(d, J=1.4, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.7-4.3\left(m, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), 8 \mathrm{PhC} H_{2}\right)$; $4.19(d, J=2.2, \mathrm{H}-\mathrm{C}(2)) ; 3.97\left(d d, J=1.6,4.1, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 3.94(d d, J=2.2,4.7, \mathrm{H}-\mathrm{C}(3)) ; 3.92-3.77(m, \mathrm{H}-\mathrm{C}(4)$, $\mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}(6), 2 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)$ ).

Thermolysis of 4 . An ice-cold soln. of $\mathbf{4}(620 \mathrm{mg}, 1.18 \mathrm{mmol})$ in toluene ( 5 ml ) was added dropwise via a syringe to toluene ( 5 ml ) and stirred for 2 h at $45^{\circ}$ under $\mathrm{N}_{2}$. Evaporation and FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$ ) gave $60(463 \mathrm{mg}$, $77 \%$ ). Similarly, thermolysis of $4(650 \mathrm{mg}, 1.23 \mathrm{mmol})$ in THF ( 5 ml ) or $4(610 \mathrm{mg}, 1.16 \mathrm{mmol})$ in dioxane ( 5 ml ) yielded $60\left(400 \mathrm{mg}(63 \%)\right.$ and $326 \mathrm{mg}(55 \%)$, resp.). Prep. HPLC (hexane $/ \mathrm{Et}_{2} \mathrm{O} 3: 1,14 \mathrm{ml} / \mathrm{min}$ ) and crystallization from $\mathrm{Et}_{2} \mathrm{O}$ /hexane gave pure ( $\mathrm{Z}, \mathrm{Z}$ )-2,3,4,6-tetra-O-pivaloyl-D-glucono-1,5-lactone Azine ( $\mathbf{6 0}$ ). $R_{\mathrm{f}}$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:2) 0.71 . M.p. $120^{\circ}$ (dec.). $[\alpha]_{\mathrm{D}}^{25}=61.2\left(c=1.05, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3020 \mathrm{w}(\mathrm{sh}), 2970 \mathrm{~m}, 2930 \mathrm{~m}, 2910 \mathrm{~m}(\mathrm{sh})$, $2870 \mathrm{w}, 1745 \mathrm{~s}, 1660 \mathrm{~m}, 1480 \mathrm{~m}, 1460 \mathrm{~m}, 1400 \mathrm{w}, 1370 \mathrm{w}, 1280 \mathrm{~m}, 1240 \mathrm{~m}, 1170 \mathrm{~m}$ (sh), $1140 \mathrm{~s}, 1100 \mathrm{~m}$ (sh), 1070 w (sh), $1060 \mathrm{w}, 1040 \mathrm{~m}, 1000 \mathrm{w}, 890 \mathrm{w}, 760 \mathrm{w} .{ }^{\mathrm{J}} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 5.72(d, J=8.1, \mathrm{H}-\mathrm{C}(2)) ; 5.57(t, J=8.3$, $\mathrm{H}-\mathrm{C}(3)) ; 5.39(d d, J=8.5,10.1, \mathrm{H}-\mathrm{C}(4)) ; 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(6)) ; 3.76(d d d, J=2.2,3.3,10.2, \mathrm{H}-\mathrm{C}(5)) ; 1.27$ $(s), 1.23(s), 1.12(s), 1.08(s, 4 t-\mathrm{Bu}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 177.31(s) ; 176.46(s) ; 176.02(s) ; 175.88(s)$; $148.24(s) ; 75.59(d) ; 71.96(d) ; 68.97(d) ; 66.93(d) ; 61.30(t) ; 38.96(s) ; 38.82(s) ; 38.71(s) ; 27.21(q) ; 27.11(q) ;$ $26.98(q) ; 26.74(q)$. CI-MS: $1027(20), 1026(58), 1025\left(100,[M+1]^{+}\right), 924(25), 923(47), 823(12), 822(25), 821$ (49), 532 (24), 120 (12). Anal. calc. for $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{18}$ (1025.25): C 60.92, H 8.26, N 2.73; found: C 60.95, H 8.30, N 2.85 .

Thermolysis of 9 . A soln. of $9(200 \mathrm{mg}, 0.488 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was heated under reflux for 24 h . The solvent was evaporated. Prep. $\mathrm{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right)$ of the white foamy residue gave $61(93.1 \mathrm{mg}, 48 \%)$ and $62(14.6 \mathrm{mg}, 8 \%)$ [29].

Data of (Z,Z)-2-Acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-D-allono-1,5-lactone Azine ( $\mathbf{6 1 )}$. $R_{\mathrm{f}}$ $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 97: 3\right) 0.03 .[x]_{\mathrm{D}}^{21}=108.0\left(c=0.87, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3440 w, 3000 w, 2940 w, 2870 w, 1660 s, 1495 s$, $1455 w, 1370 \mathrm{~m}, 1345 w, 1305 w, 1150 \mathrm{~m}, 1120 \mathrm{~s}, 1100 \mathrm{~s}, 1060 s, 1030 s, 960 w, 910 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $7.51-7.47(m, 2$ arom. H); 7.42-7.28 ( $\mathrm{m}, 8$ arom. H); $6.27(d, J=7.2, \mathrm{AcN} H) ; 5.54(s, \mathrm{PhCH}) ; 4.93(d, J=11.6$, $\mathrm{PhC} H), 4.79(d d, J=3.0,7.2, \mathrm{H}-\mathrm{C}(2)) ; 4.57(d, J=11.6, \mathrm{PhC} H) ; 4.43(d t, J=5.1,10.1, \mathrm{H}-\mathrm{C}(5)) ; 4.41(d d$, $J \approx 1.8,2.8, \mathrm{H}-\mathrm{C}(3)) ; 4.25\left(d d, J=5.0,10.4, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.97(d d, J=1.5,9.8, \mathrm{H}-\mathrm{C}(4)) ; 3.75(t, J=10.5$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 1.94(s, \mathrm{AcN}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.56(s) ; 149.07(s) ; 137.81(s) ; 136.78(s) ; 129.27-$ 126.10 (several $d$ ); $102.22(d) ; 78.56(d) ; 74.64(d) ; 74.44(t) ; 68.34(t) ; 67.73(d) ; 50.89(d) ; 23.07(q)$. CI-MS: 791 $\left(3,[M+1]^{+}\right), 683\left(43,[M-\mathrm{BnOH}+1]^{+}\right), 576(36), 575\left(100,[M-2 \mathrm{BnOH}+1]^{+}\right), 303(46), 289(38)$. Anal. calc. for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{10}(790.89)$ : C 66.82, H 5.86, N 7.08 ; found: C 66.97, H 5.82, N 6.92.

## REFERENCES

[1] M. T.H. Liu, 'Chemistry of Diazirines', CRC Press, Inc., Boca Raton, Florida, 1987.
[2] M.T.H. Liu, I. D. R. Stevens, in 'Chemistry of Diazirines', Ed. M.T. H. Liu, CRC Press Inc., Boca Raton, Florida, 1987, I, p. 111.
[3] R. A. Moss, M. Wlostowsky, J. Terpinski, K. Krogh-Jespersen, G. Kmiecik-Lawrynowicz, J. Am. Chem. Soc. 1987, 109, 3811.
[4] R. A. Moss, M. Wlostowsky, S. Shen, K. Krogh-Jespersen, A. Matro, J. Am. Chem. Soc. 1988, 110, 4443.
[5] R. A. Moss, G. J. Ho, B. K. Wilk, Tetrahedron Lett. 1989, $30,2473$.
[6] R. A. Moss, T. Zdrojewski, J. Phys. Org. Chem. 1990, 3, 694.
[7] 1. D. R. Stevens, M. T.H. Liu, N. Soundararajan, N. Paike, J. Chem. Soc., Perkin Trans. 2 1990, 661.
[81 A. Vasella, P. Dhar, C. Witzig, Helo. Chim. Acta 1993, 76, 1767.
[9] C. Li, A. Vasella, Helv. Chim. Acta 1993, 76, 197.
[10] C. Li, A. Vasella, Helv. Chim. Acta 1993, 76, 211.
[11] R. A. Moss, T. Zdrojewski, G. J. Ho, J. Chem. Soc., Chem. Commun. 1991, 946.
[12] R.S. Sheridan, R.A. Moss, B. K. Wilk, S. Shen, M. Wlostowski, M.A. Kesselmayer, R. Subramanian, O. Kmiecik-Lawrynowicz, K. Krogh-Jespersen, J. Am. Chem. Soc. 1988, I10, 7563.
[13] R. A. Moss, M. Fedorynski, G. Kmiecik-Lawrynowicz, J. Terpinski, Tetrahedron Lett. 1986, 27, 2707.
[14] A. Vasella, Pure Appl. Chem. 1991, 63, 507.
[15] A. Linden, A. Vasella, C. Witzig, Helv. Chim. Acta 1992, 75, 1572.
[16] A. F. Bochkov, G. E. Zaikov, 'Chemistry of the O-Glycosidic Bond', Pergamon Press, 1979, p. 181.
[17] D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, J. Am. Chem. Soc. 1989, 111, 8540.
[18] H. Paulsen, Angew. Chem. 1982, 94, 184.
[19] R. W. Friesen, S. J. Danishefsky, J. Am. Chem. Soc. 1989, 1H1, 6656.
[20] G. H. Veeneman, S. H. van Boom, Tetrahedron Lett. 1990, 31, 275.
[21] M. T.H. Liu, K. Toriyama, Can. J. Chem. 1972, 50, 3009.
[22] R. A. Moss, T. Zdrojewski, J. K. Krogh, M. Wlostowski, A. Matro, Tetrahedron Lett. 1991, 32, 1925.
[23] a) T.T. Tidwell, Angew. Chem. 1984, 96, 16; b) W. Kirmse, B. Goer, J. Am. Chem. Soc. 1990, 112, 4556; c) Y.-D. Wu, W. Kirmse, K. N. Houk, J. Am. Chem. Soc. 1990, 112, 4557.
[24] D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, J. Am. Chem. Soc. 1988, 110, 5582.
[25] B. Fraser-Reid, Z. Wu, W. Andrews, E. Skowronski, J.P. Bowen, J. Am. Chem. Soc. 1991, 113, 1434.
[26] A. J. Ratcliffe, D. R. Mootoo, C.W. Andrews, B. Fraser-Reid, J. Am. Chem. Soc. 1989, 111, 7661.
[27] R.C. G. Moggridge, A. Neuberger, J. Chem. Soc. 1938, 745.
[28] R. D. Marshall, Nature 1963, 199, 998.
[29] A. Vasella, C. Witzig, R. Husi, Helv. Chim. Acta 1991, 74, 1362.
[30] L. J. Haynes, F.H. Newth, Adv. Carbohydr. Chem. Biochem. 1955, 10, 207.
[31] W. G. Overend, C. W. Rees, J. S. Sequeirea, J. Chem. Soc. C 1962, 3429.
[32] M. S. Feather, J. F. Harris, J. Org. Chem. 1965, 30, 153.
[33] J. N. Miller, E. R. Doyle, Carbohydr. Res. 1982, 102, 99.
[34] A. Vasella, C. Waldraff, Helo. Chim. Acta 1991, 74, 585.
[35] K. Briner, A. Vasella, Helv. Chim. Acta 1992, 75, 621.
[36] E. Bozó, A. Vasella, Helv. Chim. Acta 1992, 75, 2613.
[37] R. Betz, Ph. D. Thesis, University of Konstanz, 1984.
[38] A. Vasella, K. Briner, N. Soundararajan, M. S. Platz, J. Org. Chem. 1991, 56, 4741.
[39] K. Briner, A. Vasella, Helv. Chim. Acta 1989, 72, 1371.
[40] P. Zimmermann, R. Bommer, T. Bär, R. R. Schmidt, J. Carbohydr. Chem. 1988, 7, 435.
[41] a) T. Kawada, F. Nakatsubo, K. Murakami, Mokuzai Gakkaishi 1989, 35, 14; b) R. Johannson, B. Samuelsson, J. Chem. Soc., Chem. Commun. 1984, 201; c) R. Johannson, B. Samuelsson, J. Chem. Soc., Perkin Trans. I 1984, 2371.
[42] V. Ferro, M. Mocerino, R. V. Stick, D. M. G. Tilbrook, Aust. J. Chem. 1988, 41, 813.
[43] M. N. Nashed, L. Anderson, J. Chem. Soc., Chem. Commun. 1982, 1274.
[44] D. Beer, A. Vasella, Helv. Chim. Acta 1985, 68, 2254.
[45] Y. Takahashi, A. Vasella, Helv. Chim. Acta 1992, 75, 1563.
[46] S. E. Mangholz, A. Vasella, Helo. Chim. Acta 1991, 74, 2100.
[47] A. J. Speziale, G. T. Marco, K. W. Ratts, J. Am. Chem. Soc. 1960, 82, 1260.
[48] H. J. Bestmann, R. Zimmermann, in 'Methoden der Organischen Chemie', Ed. Houben-Weil-Müller, Thieme, Stuttgart, 1982, Vol. E 1, p. 616.
[49] H. J. Bestmann, A. J. Kos, K. Witzgall, P. von Ragué Schleyer, Chem. Ber. 1986, 119, 1331.
[50] E. Anders, T. Clark, T. Gassner, Chem. Ber. 1986, 119, 1350.
[51] M. Shimizu, Y. Nakahara, S. Kanemoto, H. Yoshioka, Tetrahedron Lett. 1987, 28, 1677.
[52] V. Subramanian, E.H. Silver, A. H. Soloway, J. Org. Chem. 1976, 41, 1272.
[53] T. V. Rajanbabu, T. Funkunaga, G. S. Reddy, J. Am. Chem. Soc. 1989, I11, 1759.
[54] M. E. Evans, Carbohydrate Res. 1972, 21, 473.
[55] R. T. Lee, Y.C. Lee, Carbohydr. Res. 1974, 37, 193.
[56] F. M. Winnik, J.P. Carver, J. J. Krepinsky, J. Am. Chem. Soc. 1982, 47, 2701.
[57] R. Harrison, H. G. Fletcher Jr., J. Org. Chem. 1965, 30, 2317.
[58] M. A. Nashed, C. W. Slife, M. Kiso, L. Anderson, Carbohydr. Res. 1980, 82, 237.
[59] P. Sinaÿ, P. Rollin, J. Chem. Soc., Perkin Trans. I 1977, 2513.
[60] D. Beer, Ph. D. Thesis, University of Zürich, 1989.
[61] B. Bernet, A. Vasella, unpublished results.
[62] H. Günther, in 'NMR-Spektroskopie', Georg Thieme Verlag, Stuttgart-New York, 1983, p. 67.
[63] J. J. Uebel, J. C. Martin, J. Am. Chem. Soc. 1964, 86, 4618.
[64] O. T. Schmidt, T. Auer, H. Schmadel, Chem. Ber. 1960, 93, 556.
[65] S. N. Dhawan, T. L. Chick, W. J. Goux, Carbohydr. Res. 1988, 172, 297.
[66] S. Tomic-Kulenovic, D. Keglevic, Carbohydr. Res. 1980, 85, 302.
[67] S. Koto, N. Morishima, Y. Miyata, S. Zen, Bull. Chem. Soc. Jpn. 1976, 49, 2639.
[68] H. B. Boren, P. J. Garegg, L. Kenne, A. Pilotti, S. Svensson, C.-G. Swahn, Acta Chem. Scand. 1973, 27, 2740.
[69] Y. Kondo, K. Noumi, S. Kitagawa, S. Hirano, Carbohydr. Res. 1983, 123, 157.
[70] J. C. Jacquinet, P. Sinaÿ, Carbohydr. Res. 1974, 32, 101; D. Lafont, G. Descotes, ibid. 1988, 175, 35.
[71] G. W. Klumpp, 'Reaktivität in der organischen Chemie II', Georg Thieme Verlag, Stuttgart, 1978, p. 243.
[72] M. T. H. Liu, I. D. R. Stevens, J. Chem. Soc., Perkin Trans. 2 1990, 661.
[73] N.P. Smith, D. R. Stevens, J. Chem. Soc., Perkin Trans. 2 1979, 213.
[74] R. R. Schmidt, R. Preuss, R. Betz, Tetrahedron Lett. 1987, $28,6591$.
[75] R.J. Crawford, R. Raap, Can. J. Chem. 1964, 43, 356.
[76] R. M. McDonald, R. A. Krueger, J. Org. Chem. 1966, 31, 488.
[77] K. Mackenzie, 'The Chemistry of the Hydrazo, Azo, and Azoxy Groups', J. Wiley, New York, 1975, p. 329.
[78] M.T. H. Liu, N. Sundarajan, S. M. Anand, T. Ibata, Tetrahedron Lett. 1987, 28, 1011.
[79] N. P. Smith, D. R. Stevens, J. Chem. Soc., Perkin Trans. 2 1979, 1298.
[80] M.A. Kesselmayer, R. S. Sheridan, J. Am. Chem. Soc. 1986, 108, 99.
[81] R. A. Moss, J. Wlostowska, Tetrahedron Lett. 1988, 29, 2559.
[82] M.P. Doyle, K. G. High, S.-M. Oon, A. K. Osborn, Tetrahedron Lett. 1989, $30,3049$.
[83] R.A. Moss, G.-J. Ho, J. Am. Chem. Soc. 1990, I12, 5642.
[84] C. G. Overberger, J.-P. Anselme, J. Org. Chem. 1964, 29, 1188.
[85] D. M. Gale, W. J. Middleton, C. G. Krespan, J. Am. Chem. Soc. 1966, 88, 3617.
[86] M.T.H. Liu, K. Ramakrishnan, Tetrahedron Lett. 1977, 3139.
[87] M.P. Doyle, A. H. Devia, K. E. Bassett, J. W. Terpstra, S. N. Mahapatro, J. Org. Chem. 1987, 52, 1619.
[88] O.S. Mohamed, H. Dürr, M.T. Ismail, A. A. Abdel-Wahab, Tetrahedron Lett. 1989, 30, 1935.
[89] P. Yates, D. G. Farnum, D. W. Wiley, Tetrahedron 1962, $18,881$.
[90] C. J. Abelt, J. M. Pleier, J. Am. Chem. Soc. 1989, 111, 1795.
[91] R.A. Moss, S. Shen, L. M. Hadel, G. Kmiecik-Lawrynowicz, J. Wlostowska, K. Krogh-Jespersen, J. Am. Chem. Soc. 1987, 109, 4341.
[92] H. Meier, in 'Chemistry of Diazirines', Ed. M.T.H. Liu, CRC Press, Inc., Boca Raton, Florida, 1987, II, p. 2.
[93] B. M. Jennings, M. T. H. Liu, J. Am. Chem. Soc. 1976, 98, 6416.
[94] S. Fritschi, A. Vasella, Helv. Chim. Acta 1991, 74, 2024.
[95] D. R. Wolk, A. Vasella, F. Schweikart, M. G. Peter, Helv. Chim. Acta 1992, 75, 323.
[96] R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, 68, 997.
[97] R. Hoos, A. B. Naughton, W. Thiel, A. Vasella, M. Weber, K. Rupitz, S. G. Withers, Helv. Chim. Acta 1993, 76, 2666.
[98] D. Keus, J. Warkentin, J. Org. Chem. 1984, 49, 3466.
[99] O. Exner, O. Schindler, Helb. Chim. Acta 1972, 55, 1921.
[100] H.F. Schaefer, Acc. Chem. Res. 1979, 12, 288.
[101] L. S. Press, H. Shechter, J. Am. Chem. Soc. 1979, 101, 509.
[102] R.A. Moss, R.C. Munjal, J. Chem. Soc., Chem. Commun. 1978, 775.
[103] D.T.T. Su, E. R. Thornton, J. Am. Chem. Soc. 1978, 100, 1872.
[104] M. T.H. Liu, M. Tencer, Tetrahedron Lett. 1983, 24, 5713.
[105] W. Kirmse, M. Buschoff, Chem. Ber. 1967, 100, 1491.
[106] M. C. Scheller, B. Frei, Helu. Chim. Acta 1984, 67, 1734.
[107] R. A. Moss, A. Mamantov, J. Am. Chem. Soc. 1970, 92, 6951.
[108] D. Enders, S. Brauer-Scheib, P. Fey, Synthesis 1985, 4, 393.


[^0]:    ${ }^{2}$ ) Moss et al. [11] have shown that push-pull carbenes like methoxy(trifluoromethyl)carbene are not stabilized, and that the precursor 3 -(trifluoromethyl)-3-methoxydiazirine is unstable at room temperature. To the best of our knowledge, however, kinetic parameters have not been determined for this diazirine. We expect the activation energy for the thermolysis of this diazirine to be higher than for 3-methoxy-3-methyldiazirine [13]. The low stability of 3-methoxydiazirine-3-carbonitrile [22] may be related with the ability of a CN group to stabilize cationic centers (see [23] and ref. cit. therein; compare, however, [23b]. Alternatively, the diazirine could be destabilized by the geminal-group interaction of the CN and MeO groups [23c].

[^1]:    ${ }^{3}$ ) A comparison with the spectrum of $\mathbf{2 1}$ in $\mathrm{CDCl}_{3}$ shows that the influence of the solvent on the chemical shift does not lead to a $\Delta \delta>0.25 \mathrm{ppm}$.

[^2]:    ${ }^{4}$ ) Traces of $\mathrm{H}_{2} \mathrm{O}$ led to 2,3,4,6-tetra- $O$-benzyl-D-glucopyranose and a mixture of anomeric octa- $O$-benzyl-trehaloses.

[^3]:    ${ }^{5}$ ) This dihydro-oxazole is the main product of the thermolysis of 4 in the presence of i-PrOH at $50^{\circ}$. The rationalization of the formation of 62 by an intermolecular protonation of the carbene, followed by attack of the lone-pair of the carbonyl O -atom on the intermediate oxocarbenium ion is in keeping with the increased yield of $\mathbf{6 2}$ in the presence of a proton source [29].

[^4]:    $\left.{ }^{\mathrm{a}}\right)$ In $\left.\mathrm{C}_{6} \mathrm{D}_{6} .{ }^{\mathrm{b}}\right) J\left(\mathrm{NH}, \mathrm{N}^{\prime} \mathrm{H}\right)=9.2(\mathbf{3 8 a}, \mathbf{3 8 b}, \mathbf{4 7 a})$ or $\left.9.4 \mathrm{~Hz}(\mathbf{1 5}, \mathbf{2 5}, \mathbf{4 7 b}) .{ }^{\mathrm{c}}\right)$ Not determined. $\left.{ }^{\mathrm{d}}\right)$ In $\mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6}$

[^5]:    ${ }^{\text {a }}$ ) Assignment based upon ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - COSY or a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - HMQC spectrum. $\left.{ }^{\mathrm{b}}\right) \mathrm{CF}_{3}$ at $118.64 \mathrm{ppm}(J(\mathrm{C}, \mathrm{F})=322.0$

